論文の概要: Implicitly Maximizing Margins with the Hinge Loss
- arxiv url: http://arxiv.org/abs/2006.14286v1
- Date: Thu, 25 Jun 2020 10:04:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-17 03:02:49.897521
- Title: Implicitly Maximizing Margins with the Hinge Loss
- Title(参考訳): ヒンジ損失を伴う暗黙的に最大化マージン
- Authors: Justin Lizama
- Abstract要約: 固定ステップサイズの線形分離可能なデータ上の線形分類器の場合、この修正されたヒンジ損失のマージンは$mathcalO(1/t )$で$ell$max-marginに収束する。
実験結果から、この速度の増大はReLUネットワークへと引き継がれることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A new loss function is proposed for neural networks on classification tasks
which extends the hinge loss by assigning gradients to its critical points. We
will show that for a linear classifier on linearly separable data with fixed
step size, the margin of this modified hinge loss converges to the $\ell_2$
max-margin at the rate of $\mathcal{O}( 1/t )$. This rate is fast when compared
with the $\mathcal{O}(1/\log t)$ rate of exponential losses such as the
logistic loss. Furthermore, empirical results suggest that this increased
convergence speed carries over to ReLU networks.
- Abstract(参考訳): 階層化タスクのニューラルネットワークに対して,勾配を臨界点に割り当てることでヒンジ損失を拡張する新しい損失関数を提案する。
固定ステップサイズを持つ線形分離可能なデータ上の線形分類器の場合、この修正されたヒンジ損失のマージンは$\ell_2$ max-marginに$\mathcal{O}( 1/t )$で収束する。
このレートはロジスティック損失のような指数的損失の$\mathcal{o}(1/\log t)$レートと比較すると速い。
さらに、この収束速度の増大がReLUネットワークにまたがることを示す実験結果が得られた。
関連論文リスト
- Convergence Rate Analysis of LION [54.28350823319057]
LION は、勾配カルシュ=クーン=T (sqrtdK-)$で測定された $cal(sqrtdK-)$ の反復を収束する。
従来のSGDと比較して,LIONは損失が小さく,性能も高いことを示す。
論文 参考訳(メタデータ) (2024-11-12T11:30:53Z) - Large Stepsize Gradient Descent for Logistic Loss: Non-Monotonicity of the Loss Improves Optimization Efficiency [47.8739414267201]
線形分離可能なデータを用いたロジスティック回帰に一定の段差を持つ勾配降下(GD)を考える。
GD はこの初期振動位相を急速に終了し、$mathcalO(eta)$ steps となり、その後$tildemathcalO (1 / (eta t) )$ convergence rate が得られることを示す。
我々の結果は、予算が$T$ ステップであれば、GD は攻撃的なステップサイズで $tildemathcalO (1/T2)$ の加速損失を達成できることを示している。
論文 参考訳(メタデータ) (2024-02-24T23:10:28Z) - Gradient Descent Converges Linearly for Logistic Regression on Separable
Data [17.60502131429094]
変動学習率による勾配勾配降下は損失$f(x) leq 1.1 cdot f(x*) + epsilon$ロジスティック回帰目標を示す。
また、ロジスティックなレグレッションを緩やかなレグレッションに適用し、スペルシ・エラーのトレードオフを指数関数的に改善する。
論文 参考訳(メタデータ) (2023-06-26T02:15:26Z) - Nonparametric regression with modified ReLU networks [77.34726150561087]
ネットワーク重み行列を入力ベクトルに乗じる前に,まず関数$alpha$で修正したReLUニューラルネットワークによる回帰推定を考察する。
論文 参考訳(メタデータ) (2022-07-17T21:46:06Z) - On the Effective Number of Linear Regions in Shallow Univariate ReLU
Networks: Convergence Guarantees and Implicit Bias [50.84569563188485]
我々は、ラベルが$r$のニューロンを持つターゲットネットワークの符号によって決定されるとき、勾配流が方向収束することを示す。
我々の結果は、標本サイズによらず、幅が$tildemathcalO(r)$である、緩やかなオーバーパラメータ化をすでに維持しているかもしれない。
論文 参考訳(メタデータ) (2022-05-18T16:57:10Z) - Fast Margin Maximization via Dual Acceleration [52.62944011696364]
指数関数的尾の損失を持つ線形分類器を訓練するための運動量に基づく手法を提案し,解析する。
この運動量に基づく法は、最大マルジン問題の凸双対、特にこの双対にネステロフ加速度を適用することによって導出される。
論文 参考訳(メタデータ) (2021-07-01T16:36:39Z) - Fast Rates for the Regret of Offline Reinforcement Learning [69.23654172273085]
無限水平割引決定プロセス(MDP)における固定行動ポリシーによって生成されたオフラインデータからの強化学習の後悔について検討する。
最適品質関数 $Q*$ に対する任意の推定が与えられたとき、定義するポリシーの後悔は、$Q*$-estimate の点収束率の指数によって与えられる速度で収束することを示す。
論文 参考訳(メタデータ) (2021-01-31T16:17:56Z) - The Implicit Bias of Gradient Descent on Separable Data [44.98410310356165]
予測器は最大マージン(シャープマージンSVM)解の方向へ収束することを示す。
これは、トレーニングエラーがゼロになった後もロジスティックまたはクロスエントロピー損失を最適化し続ける利点を説明するのに役立つ。
論文 参考訳(メタデータ) (2017-10-27T21:47:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。