論文の概要: Fast Margin Maximization via Dual Acceleration
- arxiv url: http://arxiv.org/abs/2107.00595v1
- Date: Thu, 1 Jul 2021 16:36:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-02 13:51:23.127958
- Title: Fast Margin Maximization via Dual Acceleration
- Title(参考訳): Dual Accelerationによる高速マージン最大化
- Authors: Ziwei Ji, Nathan Srebro, Matus Telgarsky
- Abstract要約: 指数関数的尾の損失を持つ線形分類器を訓練するための運動量に基づく手法を提案し,解析する。
この運動量に基づく法は、最大マルジン問題の凸双対、特にこの双対にネステロフ加速度を適用することによって導出される。
- 参考スコア(独自算出の注目度): 52.62944011696364
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present and analyze a momentum-based gradient method for training linear
classifiers with an exponentially-tailed loss (e.g., the exponential or
logistic loss), which maximizes the classification margin on separable data at
a rate of $\widetilde{\mathcal{O}}(1/t^2)$. This contrasts with a rate of
$\mathcal{O}(1/\log(t))$ for standard gradient descent, and $\mathcal{O}(1/t)$
for normalized gradient descent. This momentum-based method is derived via the
convex dual of the maximum-margin problem, and specifically by applying
Nesterov acceleration to this dual, which manages to result in a simple and
intuitive method in the primal. This dual view can also be used to derive a
stochastic variant, which performs adaptive non-uniform sampling via the dual
variables.
- Abstract(参考訳): 本研究では,分離可能なデータの分類マージンを最大化する指数的損失(指数的損失やロジスティック損失など)を持つ線形分類器を,$\widetilde{\mathcal{o}}(1/t^2)$で学習するための運動量に基づく勾配法を提案する。
これは標準的な勾配降下では$\mathcal{o}(1/\log(t))$、正規化勾配降下では$\mathcal{o}(1/t)$と対照的である。
この運動量に基づく法は、最大母数問題の凸双対、特にネステロフ加速度をこの双対に適用することにより導出され、原始の単純で直感的な方法が導出される。
この双対ビューは、双対変数を介して適応的な非一様サンプリングを行う確率的変種を導出するのにも使うことができる。
関連論文リスト
- Methods for Convex $(L_0,L_1)$-Smooth Optimization: Clipping, Acceleration, and Adaptivity [50.25258834153574]
我々は、(強に)凸 $(L0)$-smooth 関数のクラスに焦点を当て、いくつかの既存のメソッドに対する新しい収束保証を導出する。
特に,スムーズなグラディエント・クリッピングを有するグラディエント・ディフレッシュと,ポリアク・ステップサイズを有するグラディエント・ディフレッシュのコンバージェンス・レートの改善を導出した。
論文 参考訳(メタデータ) (2024-09-23T13:11:37Z) - The Implicit Bias of Batch Normalization in Linear Models and Two-layer
Linear Convolutional Neural Networks [117.93273337740442]
勾配勾配勾配は、exp(-Omega(log2 t))$収束率でトレーニングデータ上の一様マージン分類器に収束することを示す。
また、バッチ正規化はパッチワイドの均一なマージンに対して暗黙の偏りを持つことを示す。
論文 参考訳(メタデータ) (2023-06-20T16:58:00Z) - Accelerated Quasi-Newton Proximal Extragradient: Faster Rate for Smooth
Convex Optimization [26.328847475942894]
我々は,本手法が$Obigl(minfrac1k2, fracsqrtdlog kk2.5bigr)$の収束率を達成できることを証明した。
我々の知る限りでは、この結果はネステロフの加速勾配に対する準ニュートン型法の証明可能な利得を示す最初のものである。
論文 参考訳(メタデータ) (2023-06-03T23:31:27Z) - Optimal Extragradient-Based Bilinearly-Coupled Saddle-Point Optimization [116.89941263390769]
滑らかな凸凹凸結合型サドル点問題, $min_mathbfxmax_mathbfyF(mathbfx) + H(mathbfx,mathbfy)$ を考える。
漸進的勾配指数(AG-EG)降下指数アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2022-06-17T06:10:20Z) - High-probability Bounds for Non-Convex Stochastic Optimization with
Heavy Tails [55.561406656549686]
我々は、勾配推定が末尾を持つ可能性のある一階アルゴリズムを用いたヒルベルト非最適化を考える。
本研究では, 勾配, 運動量, 正規化勾配勾配の収束を高確率臨界点に収束させることと, 円滑な損失に対する最もよく知られた繰り返しを示す。
論文 参考訳(メタデータ) (2021-06-28T00:17:01Z) - A Variance Controlled Stochastic Method with Biased Estimation for
Faster Non-convex Optimization [0.0]
減少勾配(SVRG)の性能を向上させるために, 分散制御勾配(VCSG)という新しい手法を提案する。
ラムダ$はVCSGで導入され、SVRGによる分散の過剰還元を避ける。
$mathcalO(min1/epsilon3/2,n1/4/epsilon)$ 勾配評価の数。
論文 参考訳(メタデータ) (2021-02-19T12:22:56Z) - A Unified Analysis of First-Order Methods for Smooth Games via Integral
Quadratic Constraints [10.578409461429626]
本研究では、滑らかで強可変なゲームやイテレーションのための一階法に積分二次的制約理論を適用する。
我々は、負の運動量法(NM)に対して、既知の下界と一致する複雑性$mathcalO(kappa1.5)$で、初めて大域収束率を与える。
一段階のメモリを持つアルゴリズムでは,バッチ毎に1回だけ勾配を問合せすれば,高速化は不可能であることを示す。
論文 参考訳(メタデータ) (2020-09-23T20:02:00Z) - Adaptive Gradient Methods Can Be Provably Faster than SGD after Finite
Epochs [25.158203665218164]
適応勾配法は有限時間後にランダムシャッフルSGDよりも高速であることを示す。
我々の知る限り、適応的勾配法は有限時間後にSGDよりも高速であることを示すのはこれが初めてである。
論文 参考訳(メタデータ) (2020-06-12T09:39:47Z) - Stochastic gradient-free descents [8.663453034925363]
本稿では,最適化問題の解法として,モーメント付き勾配法と加速勾配を提案する。
本研究では,これらの手法の収束挙動を平均分散フレームワークを用いて解析する。
論文 参考訳(メタデータ) (2019-12-31T13:56:36Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
適応アルゴリズムは勾配の歴史を用いて勾配を更新し、深層ニューラルネットワークのトレーニングにおいてユビキタスである。
本稿では,非コンケーブ最小値問題に対するOptimisticOAアルゴリズムの変種を解析する。
実験の結果,適応型GAN非適応勾配アルゴリズムは経験的に観測可能であることがわかった。
論文 参考訳(メタデータ) (2019-12-26T22:10:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。