論文の概要: On the Nature of Programming Exercises
- arxiv url: http://arxiv.org/abs/2006.14476v1
- Date: Thu, 25 Jun 2020 15:22:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-12 19:55:27.855087
- Title: On the Nature of Programming Exercises
- Title(参考訳): プログラミング演習の性質について
- Authors: Alberto Sim\~oes and Ricardo Queir\'os
- Abstract要約: プログラミング演習の性質が成功と一貫した学習の重要な要素であることを理解することが不可欠である。
本稿では,プログラミング演習の作成における様々なアプローチについて考察する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There are countless reasons cited in scientific studies to explain the
difficulties in programming learning. The reasons range from the subject's
complexity, the ineffective teaching and study methods, to psychological
aspects such as demotivation. Still, learning programming often boils down to
practice on exercise solving. Hence, it is essential to understand that the
nature of a programming exercise is an important factor for the success and
consistent learning.
This paper explores different approaches on the creation of a programming
exercise, starting with realizing how it is currently formalized, presented and
evaluated. From there, authors suggest variations that seek to broaden the way
an exercise is solved and, with this diversity, increase student engagement and
learning outcome. The several types of exercises presented can use gamification
techniques fostering student motivation. To contextualize the student with his
peers, we finish presenting metrics that can be obtained by existing automatic
assessment tools.
- Abstract(参考訳): 科学研究において、プログラミング学習の難しさを説明する理由は無数にある。
理由は、被験者の複雑さ、非効率な指導方法、学習方法から、動機づけなどの心理的側面まで様々である。
それでも、プログラミングを学ぶことは、しばしばエクササイズ解決の練習に沸騰します。
したがって、プログラミング演習の性質が成功と一貫した学習の重要な要素であることを理解することが不可欠である。
本稿では,現在の形式化,提示,評価の方法を理解することから始まる,プログラミング演習の作成に関するさまざまなアプローチについて検討する。
そこから、運動の解決方法を広げようとするバリエーションを提案し、この多様性により、学生のエンゲージメントと学習結果を増加させる。
提示されるいくつかのエクササイズは、生徒のモチベーションを促進するゲーミフィケーション技術を利用することができる。
学生を仲間とコンテキスト化するために,既存の自動評価ツールによって得られるメトリクスを提示し終える。
関連論文リスト
- Evaluating Contextually Personalized Programming Exercises Created with Generative AI [4.046163999707179]
本報告では,GPT-4で作成した文脈別にパーソナライズされたプログラミング演習を含む,選択型プログラミングコースにおけるユーザスタディについて報告する。
その結果, GPT-4で発生する運動の質は概して高かった。
これは、AIが生成するプログラミング問題は、入門プログラミングコースに付加価値があることを示している。
論文 参考訳(メタデータ) (2024-06-11T12:59:52Z) - YODA: Teacher-Student Progressive Learning for Language Models [82.0172215948963]
本稿では,教師が指導するプログレッシブ・ラーニング・フレームワークであるYodaを紹介する。
モデルファインチューニングの有効性を向上させるために,教師の教育過程をエミュレートする。
実験の結果, YODAのデータによるLLaMA2のトレーニングにより, SFTは大幅に向上した。
論文 参考訳(メタデータ) (2024-01-28T14:32:15Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
我々は,対話型模倣学習と類似するが,さらに実践的な仮定の下で,非政治強化学習によってパフォーマンスが向上できることを実証する。
提案手法は,ユーザ介入信号を用いた強化学習を報奨として利用する。
このことは、インタラクティブな模倣学習において介入する専門家がほぼ最適であるべきだという仮定を緩和し、アルゴリズムが潜在的に最適でない人間の専門家よりも改善される行動を学ぶことを可能にする。
論文 参考訳(メタデータ) (2023-11-21T21:05:21Z) - Personalization, Cognition, and Gamification-based Programming Language
Learning: A State-of-the-Art Systematic Literature Review [0.13053649021965597]
計算機科学におけるプログラミングコースは、多くの学生にとって最初のコンピュータプログラミング入門であることが多いため、重要である。
現在の大学講堂でよく使われている学習モデルでは、モチベーションや学習への参加が欠如していることが多い。
本稿では,プログラミングコースにおける効果的パーソナライズされたゲーミフィケーション介入の設計と実装に関する知見を提供する。
論文 参考訳(メタデータ) (2023-09-05T05:14:23Z) - Many bioinformatics programming tasks can be automated with ChatGPT [3.2698789104455677]
人工知能の最近の進歩により、人間の言語によるプロンプトを関数コードに変換することが可能になった。
我々は,そのようなモデルであるOpenAIのChatGPTが,基本的なプログラミングタスクから中程度のプログラミングタスクを完遂できる範囲を評価した。
論文 参考訳(メタデータ) (2023-03-07T23:32:17Z) - A Survey of Deep Learning for Mathematical Reasoning [71.88150173381153]
我々は過去10年間の数学的推論とディープラーニングの交差点における重要なタスク、データセット、方法についてレビューする。
大規模ニューラルネットワークモデルの最近の進歩は、新しいベンチマークと、数学的推論にディープラーニングを使用する機会を開放している。
論文 参考訳(メタデータ) (2022-12-20T18:46:16Z) - Dynamic Diagnosis of the Progress and Shortcomings of Student Learning
using Machine Learning based on Cognitive, Social, and Emotional Features [0.06999740786886534]
学生の多様性は、学生が時間とともに学び、進歩していく方法に多様性を追加するため、困難である。
単一の教育アプローチは効果がなく、結果として学生は彼らの潜在能力を満たさない。
本稿では,データ分析と機械学習に基づく新しい手法について論じる。
論文 参考訳(メタデータ) (2022-04-13T21:14:58Z) - An Analysis of Programming Course Evaluations Before and After the
Introduction of an Autograder [1.329950749508442]
本稿では,最近自己評価を導入した基礎的コンピュータ科学コースの標準化された大学評価アンケートに対する回答について検討する。
我々は,教師と生徒の交流の改善,コースの質の向上,学習の成功の向上,時間の短縮,難易度の向上など,データに大きな変化をもたらした可能性について仮説を立てた。
オートグレーダ技術は、プログラミングコースにおける生徒の満足度を向上させるための教育方法として検証することができる。
論文 参考訳(メタデータ) (2021-10-28T14:09:44Z) - A Review of Uncertainty Quantification in Deep Learning: Techniques,
Applications and Challenges [76.20963684020145]
不確実性定量化(UQ)は、最適化と意思決定プロセスの両方において不確実性の低減に重要な役割を果たしている。
ビザレ近似とアンサンブル学習技術は、文学において最も広く使われている2つのUQ手法である。
本研究は, 深層学習におけるUQ手法の最近の進歩を概観し, 強化学習におけるこれらの手法の適用について検討する。
論文 参考訳(メタデータ) (2020-11-12T06:41:05Z) - Hierarchical Affordance Discovery using Intrinsic Motivation [69.9674326582747]
本研究では,移動ロボットの価格学習を支援するために,本質的なモチベーションを用いたアルゴリズムを提案する。
このアルゴリズムは、事前にプログラムされたアクションなしで、相互に関連のある価格を自律的に発見し、学習し、適応することができる。
一度学習すると、これらの余裕はアルゴリズムによって様々な困難を伴うタスクを実行するために一連のアクションを計画するために使われる。
論文 参考訳(メタデータ) (2020-09-23T07:18:21Z) - Importance Weighted Policy Learning and Adaptation [89.46467771037054]
政治外学習の最近の進歩の上に構築された,概念的にシンプルで,汎用的で,モジュール的な補完的アプローチについて検討する。
このフレームワークは確率論的推論文学のアイデアにインスパイアされ、堅牢な非政治学習と事前の行動を組み合わせる。
提案手法は,メタ強化学習ベースラインと比較して,ホールドアウトタスクにおける競合適応性能を実現し,複雑なスパース・リワードシナリオにスケールすることができる。
論文 参考訳(メタデータ) (2020-09-10T14:16:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。