論文の概要: Does the Whole Exceed its Parts? The Effect of AI Explanations on
Complementary Team Performance
- arxiv url: http://arxiv.org/abs/2006.14779v3
- Date: Tue, 12 Jan 2021 22:50:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-16 20:37:15.841442
- Title: Does the Whole Exceed its Parts? The Effect of AI Explanations on
Complementary Team Performance
- Title(参考訳): 全体はパーツを上回っていますか?
AI説明が相補的チームパフォーマンスに及ぼす影響
- Authors: Gagan Bansal, Tongshuang Wu, Joyce Zhou, Raymond Fok, Besmira Nushi,
Ece Kamar, Marco Tulio Ribeiro, Daniel S. Weld
- Abstract要約: 以前の研究では、AIが人間と最高のチームの両方を上回った場合にのみ、説明による改善が観察された。
我々は、3つのデータセットで混合メソッドのユーザー研究を行い、人間に匹敵する精度のAIが、参加者のタスク解決に役立ちます。
説明は、人間がAIの推奨を受け入れる可能性を高める。
- 参考スコア(独自算出の注目度): 44.730580857733
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many researchers motivate explainable AI with studies showing that human-AI
team performance on decision-making tasks improves when the AI explains its
recommendations. However, prior studies observed improvements from explanations
only when the AI, alone, outperformed both the human and the best team. Can
explanations help lead to complementary performance, where team accuracy is
higher than either the human or the AI working solo? We conduct mixed-method
user studies on three datasets, where an AI with accuracy comparable to humans
helps participants solve a task (explaining itself in some conditions). While
we observed complementary improvements from AI augmentation, they were not
increased by explanations. Rather, explanations increased the chance that
humans will accept the AI's recommendation, regardless of its correctness. Our
result poses new challenges for human-centered AI: Can we develop explanatory
approaches that encourage appropriate trust in AI, and therefore help generate
(or improve) complementary performance?
- Abstract(参考訳): 多くの研究者は、AIが推奨を説明すると、意思決定タスクにおける人間とAIチームのパフォーマンスが改善することを示す研究で説明可能なAIを動機付けている。
しかし、以前の研究では、AIが人間と最高のチームの両方を上回った場合にのみ、説明による改善が観察された。
チームの正確さが人間かAIの作業ソロよりも高い場合、説明は相補的なパフォーマンスにつながるか?
我々は3つのデータセットで混合手法のユーザスタディを行い、人間に匹敵する精度のAIは、参加者がタスク(ある条件下で自身を説明する)を解決するのに役立ちます。
ai拡張による補足的な改善が見られたが、説明では改善されなかった。
むしろ説明は、人間がその正確性に関わらず、AIの推奨を受け入れる可能性を高めた。
我々の結果は、人間中心のAIに新しい課題をもたらす。AIへの適切な信頼を促す説明的アプローチを開発することは可能か?
関連論文リスト
- Understanding the Effect of Counterfactual Explanations on Trust and
Reliance on AI for Human-AI Collaborative Clinical Decision Making [5.381004207943597]
本研究は,7人のセラピストと10人のレイパーを対象に,ストローク後生存者の運動の質を評価するための実験を行った。
我々は2種類のAI説明なしで、彼らのパフォーマンス、タスクの合意レベル、AIへの依存を分析した。
我々の研究は、AIモデルの精度をより正確に見積り、間違ったAI出力に対する過度な信頼を減らすために、反事実的説明の可能性について論じている。
論文 参考訳(メタデータ) (2023-08-08T16:23:46Z) - Improving Human-AI Collaboration With Descriptions of AI Behavior [14.904401331154062]
人々はAIシステムを使って意思決定を改善するが、しばしばAIの予測を過度に、あるいは過度に予測し、手伝わなかったよりも悪いパフォーマンスをする。
人々がAIアシスタントを適切に頼りにするために、行動記述を示すことを提案する。
論文 参考訳(メタデータ) (2023-01-06T00:33:08Z) - Advancing Human-AI Complementarity: The Impact of User Expertise and
Algorithmic Tuning on Joint Decision Making [10.890854857970488]
ユーザのドメイン知識、AIシステムのメンタルモデル、レコメンデーションへの信頼など、多くの要因がヒューマンAIチームの成功に影響を与える可能性がある。
本研究は,非自明な血管ラベル作成作業において,血管が流れているか停止しているかを被験者に示すことを目的とした。
以上の結果から,AI-Assistantからの推薦はユーザの意思決定に役立つが,AIに対するユーザベースラインのパフォーマンスや,AIエラー型の相補的チューニングといった要因は,チーム全体のパフォーマンスに大きな影響を及ぼすことが示された。
論文 参考訳(メタデータ) (2022-08-16T21:39:58Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - The Who in XAI: How AI Background Shapes Perceptions of AI Explanations [61.49776160925216]
私たちは、2つの異なるグループ、つまりAIのバックグラウンドを持つ人々といない人たちの、異なるタイプのAI説明に対する理解について、混合手法による研究を行います。
その結果,(1) 両群は異なる理由から不合理な数に対する信頼を示し,(2) それぞれの群は意図した設計以上の異なる説明に価値を見出した。
論文 参考訳(メタデータ) (2021-07-28T17:32:04Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - To Trust or to Think: Cognitive Forcing Functions Can Reduce
Overreliance on AI in AI-assisted Decision-making [4.877174544937129]
AIによる意思決定支援ツールによってサポートされる人々は、しばしばAIに過度に依存します。
AIの決定に説明を加えることは、過度な信頼を減らすものではありません。
我々の研究は、人間の認知モチベーションが説明可能なAIソリューションの有効性を損なうことを示唆している。
論文 参考訳(メタデータ) (2021-02-19T00:38:53Z) - Does Explainable Artificial Intelligence Improve Human Decision-Making? [17.18994675838646]
我々は、AI(制御)を使わずに客観的な人間の意思決定精度を、AI予測(説明なし)とAI予測(説明なし)とを比較して評価する。
あらゆる種類のAI予測は、ユーザの判断精度を改善する傾向がありますが、説明可能なAIが有意義な影響を与えるという決定的な証拠はありません。
我々の結果は、少なくともいくつかの状況において、説明可能なAIが提供する「なぜ」情報は、ユーザの意思決定を促進することができないことを示唆している。
論文 参考訳(メタデータ) (2020-06-19T15:46:13Z) - Is the Most Accurate AI the Best Teammate? Optimizing AI for Teamwork [54.309495231017344]
AIシステムは人間中心の方法でトレーニングされ、チームのパフォーマンスに直接最適化されるべきである、と私たちは主張する。
我々は,AIレコメンデーションを受け入れるか,あるいはタスク自体を解決するかを選択する,特定のタイプのAIチームを提案する。
実世界の高精度データセット上での線形モデルと非線形モデルによる実験は、AIが最も正確であることは、最高のチームパフォーマンスに繋がらないことを示している。
論文 参考訳(メタデータ) (2020-04-27T19:06:28Z) - Effect of Confidence and Explanation on Accuracy and Trust Calibration
in AI-Assisted Decision Making [53.62514158534574]
ケース固有のモデル情報を明らかにする特徴が、信頼度を調整し、人間とAIのジョイントパフォーマンスを向上させることができるかどうかを検討する。
信頼スコアは、AIモデルに対する人々の信頼を校正するのに役立ちますが、信頼の校正だけでは、AI支援による意思決定を改善するには不十分です。
論文 参考訳(メタデータ) (2020-01-07T15:33:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。