Unsupervised Learning for Asynchronous Resource Allocation in Ad-hoc
Wireless Networks
- URL: http://arxiv.org/abs/2011.02644v1
- Date: Thu, 5 Nov 2020 03:38:36 GMT
- Title: Unsupervised Learning for Asynchronous Resource Allocation in Ad-hoc
Wireless Networks
- Authors: Zhiyang Wang, Mark Eisen and Alejandro Ribeiro
- Abstract summary: We design an unsupervised learning method based on Aggregation Graph Neural Networks (Agg-GNNs)
We capture the asynchrony by modeling the activation pattern as a characteristic of each node and train a policy-based resource allocation method.
- Score: 122.42812336946756
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider optimal resource allocation problems under asynchronous wireless
network setting. Without explicit model knowledge, we design an unsupervised
learning method based on Aggregation Graph Neural Networks (Agg-GNNs).
Depending on the localized aggregated information structure on each network
node, the method can be learned globally and asynchronously while implemented
locally. We capture the asynchrony by modeling the activation pattern as a
characteristic of each node and train a policy-based resource allocation
method. We also propose a permutation invariance property which indicates the
transferability of the trained Agg-GNN. We finally verify our strategy by
numerical simulations compared with baseline methods.
Related papers
- GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
Graph neural networks are increasingly becoming the framework of choice for graph-based machine learning.
We propose a new graph neural network architecture that substitutes classical message passing with an analysis of the local distribution of node features.
arXiv Detail & Related papers (2024-01-17T13:04:23Z) - Learning State-Augmented Policies for Information Routing in
Communication Networks [92.59624401684083]
We develop a novel State Augmentation (SA) strategy to maximize the aggregate information at source nodes using graph neural network (GNN) architectures.
We leverage an unsupervised learning procedure to convert the output of the GNN architecture to optimal information routing strategies.
In the experiments, we perform the evaluation on real-time network topologies to validate our algorithms.
arXiv Detail & Related papers (2023-09-30T04:34:25Z) - Learning Autonomy in Management of Wireless Random Networks [102.02142856863563]
This paper presents a machine learning strategy that tackles a distributed optimization task in a wireless network with an arbitrary number of randomly interconnected nodes.
We develop a flexible deep neural network formalism termed distributed message-passing neural network (DMPNN) with forward and backward computations independent of the network topology.
arXiv Detail & Related papers (2021-06-15T09:03:28Z) - Accelerating Neural Network Training with Distributed Asynchronous and
Selective Optimization (DASO) [0.0]
We introduce the Distributed Asynchronous and Selective Optimization (DASO) method to accelerate network training.
DASO uses a hierarchical and asynchronous communication scheme comprised of node-local and global networks.
We show that DASO yields a reduction in training time of up to 34% on classical and state-of-the-art networks.
arXiv Detail & Related papers (2021-04-12T16:02:20Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
Graph neural networks (GNNs) aim to model the local graph structures and capture the hierarchical patterns by aggregating the information from neighbors.
It is a challenging task to develop an effective aggregation strategy for each node, given complex graphs and sparse features.
We propose Policy-GNN, a meta-policy framework that models the sampling procedure and message passing of GNNs into a combined learning process.
arXiv Detail & Related papers (2020-06-26T17:03:06Z) - Resource Allocation via Graph Neural Networks in Free Space Optical
Fronthaul Networks [119.81868223344173]
This paper investigates the optimal resource allocation in free space optical (FSO) fronthaul networks.
We consider the graph neural network (GNN) for the policy parameterization to exploit the FSO network structure.
The primal-dual learning algorithm is developed to train the GNN in a model-free manner, where the knowledge of system models is not required.
arXiv Detail & Related papers (2020-06-26T14:20:48Z) - Consensus Driven Learning [0.0]
We propose a new method of distributed, decentralized learning that allows a network of nodes to coordinate their training using asynchronous updates over an unreliable network.
This is achieved by taking inspiration from Distributed Averaging Consensus algorithms to coordinate the various nodes.
We show that our coordination method allows models to be learned on highly biased datasets, and in the presence of intermittent communication failure.
arXiv Detail & Related papers (2020-05-20T18:24:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.