DiffuMeta: Algebraic Language Models for Inverse Design of Metamaterials via Diffusion Transformers
- URL: http://arxiv.org/abs/2507.15753v1
- Date: Mon, 21 Jul 2025 16:09:26 GMT
- Title: DiffuMeta: Algebraic Language Models for Inverse Design of Metamaterials via Diffusion Transformers
- Authors: Li Zheng, Siddhant Kumar, Dennis M. Kochmann,
- Abstract summary: We present DiffuMeta, a generative framework integrating diffusion transformers with a novel algebraic language representation, encoding 3D geometries as mathematical sentences.<n>This compact, unified parameterization spans diverse topologies while enabling direct application of transformers to structural design.<n>Our approach enables simultaneous control over multiple mechanical objectives, including linear and nonlinear responses beyond training domains.
- Score: 0.6531893282486697
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative machine learning models have revolutionized material discovery by capturing complex structure-property relationships, yet extending these approaches to the inverse design of three-dimensional metamaterials remains limited by computational complexity and underexplored design spaces due to the lack of expressive representations. Here, we present DiffuMeta, a generative framework integrating diffusion transformers with a novel algebraic language representation, encoding 3D geometries as mathematical sentences. This compact, unified parameterization spans diverse topologies while enabling direct application of transformers to structural design. DiffuMeta leverages diffusion models to generate novel shell structures with precisely targeted stress-strain responses under large deformations, accounting for buckling and contact while addressing the inherent one-to-many mapping by producing diverse solutions. Uniquely, our approach enables simultaneous control over multiple mechanical objectives, including linear and nonlinear responses beyond training domains. Experimental validation of fabricated structures further confirms the efficacy of our approach for accelerated design of metamaterials and structures with tailored properties.
Related papers
- Toward a Robust and Generalizable Metamaterial Foundation Model [3.0049721990828084]
We introduce the Metamaterial Foundation Model (MetaFO), a Bayesian transformer-based foundation model inspired by large language models.<n>By treating metamaterials as an operator that maps material properties to structural responses, MetaFO uncovers intricate structure-property relationships.<n>This scalable and generalizable framework marks a paradigm shift in AI-driven metamaterial discovery, paving the way for next-generation innovations.
arXiv Detail & Related papers (2025-07-03T08:48:36Z) - Efficient Design of Compliant Mechanisms Using Multi-Objective Optimization [50.24983453990065]
We address the synthesis of a compliant cross-hinge mechanism capable of large angular strokes.<n>We formulate a multi-objective optimization problem based on kinetostatic performance measures.
arXiv Detail & Related papers (2025-04-23T06:29:10Z) - MIND: Microstructure INverse Design with Generative Hybrid Neural Representation [25.55691106041371]
inverse design of microstructures plays a pivotal role in optimizing metamaterials with specific, targeted physical properties.<n>We present a novel generative model that integrates latent diffusion with Holoplane, an advanced hybrid neural representation that simultaneously encodes both geometric and physical properties.<n>Our approach generalizes across multiple microstructure classes, enabling the generation of diverse, tileable microstructures with significantly improved property accuracy and enhanced control over geometric validity.
arXiv Detail & Related papers (2025-02-01T20:25:47Z) - Structure Language Models for Protein Conformation Generation [66.42864253026053]
Traditional physics-based simulation methods often struggle with sampling equilibrium conformations.<n>Deep generative models have shown promise in generating protein conformations as a more efficient alternative.<n>We introduce Structure Language Modeling as a novel framework for efficient protein conformation generation.
arXiv Detail & Related papers (2024-10-24T03:38:51Z) - Nonlinear Inverse Design of Mechanical Multi-Material Metamaterials Enabled by Video Denoising Diffusion and Structure Identifier [2.624762732763203]
This paper presents a novel framework for inverse multi-material design based on nonlinear stress-strain responses.
By incorporating multiple materials, plasticity, and large deformation, our innovative design method allows for enhanced control over the highly nonlinear mechanical behavior of metamaterials.
arXiv Detail & Related papers (2024-09-20T21:26:15Z) - Consistent machine learning for topology optimization with microstructure-dependent neural network material models [0.0]
We present a framework for multiscale structures with spatially varying microstructural symmetry and differentiably different microstructural descriptors.
Our findings highlight the potential of integrating consistency with density-based design optimization.
arXiv Detail & Related papers (2024-08-25T14:17:43Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
We introduce an energy constrained diffusion model which encodes a batch of instances from a dataset into evolutionary states.
We provide rigorous theory that implies closed-form optimal estimates for the pairwise diffusion strength among arbitrary instance pairs.
Experiments highlight the wide applicability of our model as a general-purpose encoder backbone with superior performance in various tasks.
arXiv Detail & Related papers (2023-01-23T15:18:54Z) - How to See Hidden Patterns in Metamaterials with Interpretable Machine
Learning [82.67551367327634]
We develop a new interpretable, multi-resolution machine learning framework for finding patterns in the unit-cells of materials.
Specifically, we propose two new interpretable representations of metamaterials, called shape-frequency features and unit-cell templates.
arXiv Detail & Related papers (2021-11-10T21:19:02Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
It is shown that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
It is shown, that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
arXiv Detail & Related papers (2021-10-26T07:02:14Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
Prediction of a molecule's 3D conformer ensemble from the molecular graph holds a key role in areas of cheminformatics and drug discovery.
Existing generative models have several drawbacks including lack of modeling important molecular geometry elements.
We propose GeoMol, an end-to-end, non-autoregressive and SE(3)-invariant machine learning approach to generate 3D conformers.
arXiv Detail & Related papers (2021-06-08T14:17:59Z) - Deep Generative Modeling for Mechanistic-based Learning and Design of
Metamaterial Systems [20.659457956055366]
We propose a novel data-driven metamaterial design framework based on deep generative modeling.
We show in this study that the latent space of VAE provides a distance metric to measure shape similarity.
We demonstrate our framework by designing both functionally graded and heterogeneous metamaterial systems.
arXiv Detail & Related papers (2020-06-27T03:56:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.