Simulation and Optimisation of Air Conditioning Systems using Machine
Learning
- URL: http://arxiv.org/abs/2006.15296v1
- Date: Sat, 27 Jun 2020 06:42:25 GMT
- Title: Simulation and Optimisation of Air Conditioning Systems using Machine
Learning
- Authors: Rakshitha Godahewa, Chang Deng, Arnaud Prouzeau, Christoph Bergmeir
- Abstract summary: In building management, usually static thermal setpoints are used to maintain the inside temperature of a building at a comfortable level irrespective of its occupancy.
This paper explores how to optimise the setpoints used in a particular room during its unoccupied periods using machine learning approaches.
- Score: 4.511561231517167
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In building management, usually static thermal setpoints are used to maintain
the inside temperature of a building at a comfortable level irrespective of its
occupancy. This strategy can cause a massive amount of energy wastage and
therewith increase energy related expenses. This paper explores how to optimise
the setpoints used in a particular room during its unoccupied periods using
machine learning approaches. We introduce a deep-learning model based on
Recurrent Neural Networks (RNN) that can predict the temperatures of a future
period directly where a particular room is unoccupied and by using these
predicted temperatures, we define the optimal thermal setpoints to be used
inside the room during the unoccupied period. We show that RNNs are
particularly suitable for this learning task as they enable us to learn across
many relatively short series, which is necessary to focus on particular
operation modes of the air conditioning (AC) system. We evaluate the prediction
accuracy of our RNN model against a set of state-of-the-art models and are able
to outperform those by a large margin. We furthermore analyse the usage of our
RNN model in optimising the energy consumption of an AC system in a real-world
scenario using the temperature data from a university lecture theatre. Based on
the simulations, we show that our RNN model can lead to savings around 20%
compared with the traditional temperature controlling model that does not use
optimisation techniques.
Related papers
- Improving Building Temperature Forecasting: A Data-driven Approach with
System Scenario Clustering [3.2114754609864695]
Heat, Ventilation and Air Conditioning systems cost approximately 40% of primary energy usage in the building sector.
For large-scale HVAC system management, it is difficult to construct a detailed model for each subsystem.
New data-driven room temperature prediction model is proposed based on the k-means clustering method.
arXiv Detail & Related papers (2024-02-21T09:04:45Z) - Temperature Balancing, Layer-wise Weight Analysis, and Neural Network
Training [58.20089993899729]
This paper proposes TempBalance, a straightforward yet effective layerwise learning rate method.
We show that TempBalance significantly outperforms ordinary SGD and carefully-tuned spectral norm regularization.
We also show that TempBalance outperforms a number of state-of-the-art metrics and schedulers.
arXiv Detail & Related papers (2023-12-01T05:38:17Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z) - Interpreting Machine Learning Models for Room Temperature Prediction in
Non-domestic Buildings [0.0]
This work presents an interpretable machine learning model aimed at predicting room temperature in non-domestic buildings.
We demonstrate experimentally that the proposed model can accurately forecast room temperatures eight hours ahead in real-time.
arXiv Detail & Related papers (2021-11-23T11:16:35Z) - Personal thermal comfort models using digital twins: Preference
prediction with BIM-extracted spatial-temporal proximity data from Build2Vec [0.0]
This research aims to build upon an existing vector-based spatial model, called Build2Vec, for predicting indoor environmental preferences.
The framework uses longitudinal intensive thermal comfort subjective feedback from smart watch-based ecological momentary assessments (EMA)
The results of a test implementation show 14-28% accuracy improvement over a set of baselines that use conventional thermal preference prediction input variables.
arXiv Detail & Related papers (2021-10-30T07:43:11Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - Numerical Weather Forecasting using Convolutional-LSTM with Attention
and Context Matcher Mechanisms [10.759556555869798]
We introduce a novel deep learning architecture for forecasting high-resolution weather data.
Our Weather Model achieves significant performance improvements compared to baseline deep learning models.
arXiv Detail & Related papers (2021-02-01T08:30:42Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
This work develops a methodology that enables data-driven methods to continuously learn and optimize in a dynamic environment.
We propose to build the notion of continual learning into the modeling process of learning wireless systems.
Our design is based on a novel min-max formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2020-11-16T08:24:34Z) - A Sequential Modelling Approach for Indoor Temperature Prediction and
Heating Control in Smart Buildings [4.759925918369102]
This paper proposes a learning-based framework for sequentially applying the data-driven statistical methods to predict indoor temperature.
Experiments demonstrate the effectiveness of the modelling approach and control algorithm, and reveal the promising potential of the mixed data-driven approach in smart building applications.
arXiv Detail & Related papers (2020-09-21T13:20:27Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
We propose a data-driven control algorithm based on neural networks to reduce this cost of model identification.
We validate our learning and control algorithms on a two-story building with ten independently controlled zones, located in Italy.
arXiv Detail & Related papers (2020-01-22T00:51:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.