論文の概要: A Tool for Automatic Estimation of Patient Position in Spinal CT Data
- arxiv url: http://arxiv.org/abs/2006.15330v1
- Date: Sat, 27 Jun 2020 09:48:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-16 08:17:10.625187
- Title: A Tool for Automatic Estimation of Patient Position in Spinal CT Data
- Title(参考訳): 脊椎CTデータにおける患者位置の自動推定ツール
- Authors: Roman Jakubicek and Tomas Vicar and Jiri Chmelik
- Abstract要約: 本稿では,CTデータを標準化(HFS)患者位置に自動回転させるツールを提案する。
提案手法はCNNによる回転角の予測に基づいて,99.55 %の精度でほぼ完全な結果を得た。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Much of the recently available research and challenge data lack the meta-data
containing any information about the patient position. This paper presents a
tool for automatic rotation of CT data into a standardized (HFS) patient
position. The proposed method is based on the prediction of rotation angle with
CNN, and it achieved nearly perfect results with an accuracy of 99.55 %. We
provide implementations with easy to use an example for both Matlab and Python
(PyTorch), which can be used, for example, for automatic rotation correction of
VerSe2020 challenge data.
- Abstract(参考訳): 最近利用可能な研究や課題データの多くは、患者の位置に関する情報を含むメタデータを欠いている。
本稿では,CTデータを標準化(HFS)患者位置に自動回転させるツールを提案する。
提案手法はcnnによる回転角の予測に基づくもので,99.55 %の精度でほぼ完璧な結果を得た。
我々は,例えば VerSe2020 チャレンジデータの自動回転補正に使用可能な,Matlab と Python (PyTorch) のサンプルを,容易に使用可能な実装を提供する。
関連論文リスト
- Enhancing Precision in Tactile Internet-Enabled Remote Robotic Surgery: Kalman Filter Approach [0.0]
本稿では,計算効率の良い位置推定法としてカルマンフィルタ(KF)を提案する。
この研究は、ロボットアームシステムの力学系モデルに関する事前の知識も想定していない。
シミュレーションネットワーク条件下での患者側マニピュレータ(PSM)の位置決定におけるKFの有効性について検討した。
論文 参考訳(メタデータ) (2024-06-06T20:56:53Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
弱点アノテーションを用いたドメイン適応型シナプス検出のためのフレームワークであるAdaSynを提案する。
I SBI 2023のWASPSYNチャレンジでは、我々の手法が第1位にランクインした。
論文 参考訳(メタデータ) (2023-08-31T05:05:53Z) - Towards Unifying Anatomy Segmentation: Automated Generation of a
Full-body CT Dataset via Knowledge Aggregation and Anatomical Guidelines [113.08940153125616]
我々は533巻のボクセルレベルのラベルを142ドル(約1万2000円)で、全身CTスキャンのデータセットを作成し、解剖学的包括的カバレッジを提供する。
提案手法はラベル集約段階において手作業によるアノテーションに依存しない。
我々はCTデータに142ドルの解剖学的構造を予測できる統一解剖学的セグメンテーションモデルをリリースする。
論文 参考訳(メタデータ) (2023-07-25T09:48:13Z) - Time-dependent Iterative Imputation for Multivariate Longitudinal
Clinical Data [0.0]
Time-Dependent Iterative Imputationは時系列データを計算するための実用的なソリューションを提供する。
500,000人以上の患者を観察するコホートに応用した場合,本手法は最先端の計算法より優れていた。
論文 参考訳(メタデータ) (2023-04-16T16:10:49Z) - Transfer Learning for Real-time Deployment of a Screening Tool for
Depression Detection Using Actigraphy [8.430502131775722]
本稿では,利用者のアクチグラフィーデータに基づいて,うつ病スクリーニングツールをリアルタイムに展開するために,二次データセットに基づいて訓練されたモデルから移行学習に基づくアプローチを提案する。
プライマリセット上で行った1つの横断検証アプローチの修正版では平均精度が0.96となり、各プライマリセットからのデータはテストのために別々に設定された。
論文 参考訳(メタデータ) (2023-03-14T12:37:22Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
教師なし異常検出(UAD)は、健康な被験者の異常なデータセットからデータ分布を学習し、分布サンプルの抽出に応用することができる。
本研究では,コンテクストエンコーディング(context-encoding)VAE(ceVAE)モデルのコンパクトバージョンと,前処理と後処理のステップを組み合わせて,UADパイプライン(StRegA)を作成することを提案する。
提案したパイプラインは、BraTSデータセットのT2w画像と0.859$pm$0.112の腫瘍を検出しながら、Diceスコアが0.642$pm$0.101に達した。
論文 参考訳(メタデータ) (2022-01-31T14:27:35Z) - Longitudinal modeling of MS patient trajectories improves predictions of
disability progression [2.117653457384462]
本研究は, 実世界の患者データから情報を最適に抽出する作業に対処する。
本研究では,患者軌跡モデリングに適した機械学習手法を用いることで,患者の障害進行を2年間の地平線で予測できることを示す。
文献で利用可能なモデルと比較して、この研究はMS病の進行予測に最も完全な患者履歴を使用する。
論文 参考訳(メタデータ) (2020-11-09T20:48:00Z) - Impact of Spherical Coordinates Transformation Pre-processing in Deep
Convolution Neural Networks for Brain Tumor Segmentation and Survival
Prediction [0.0]
球面変換入力データを用いたディープ畳み込みニューラルネットワーク(DCNN)のフィード化を目的とした新しい手法を提案する。
本研究では,球面座標変換を前処理法として適用した。
LesionEncoderフレームワークはDCNNモデルから自動的に機能を抽出し、OS予測の0.586精度を実現している。
論文 参考訳(メタデータ) (2020-10-27T00:33:03Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
我々は3次元畳み込みオートエンコーダを用いて、無関係な空間画像表現を実現するとともに、ABIDEデータ上で既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-14T16:50:50Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。