Approximating Posterior Predictive Distributions by Averaging Output
From Many Particle Filters
- URL: http://arxiv.org/abs/2006.15396v3
- Date: Sun, 14 Feb 2021 00:28:58 GMT
- Title: Approximating Posterior Predictive Distributions by Averaging Output
From Many Particle Filters
- Authors: Taylor R. Brown
- Abstract summary: This paper introduces the it particle swarm filter (not to be confused with particle swarm optimization)
It targets an approximation to the sequence of posterior predictive distributions by averaging expectation approximations from many particle filters.
A law of large numbers and a central limit theorem are provided, as well as a numerical study of simulated data from a volatility model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces the {\it particle swarm filter} (not to be confused
with particle swarm optimization): a recursive and embarrassingly parallel
algorithm that targets an approximation to the sequence of posterior predictive
distributions by averaging expectation approximations from many particle
filters. A law of large numbers and a central limit theorem are provided, as
well as an numerical study of simulated data from a stochastic volatility
model.
Related papers
- Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
We study the theoretical aspects of score-based discrete diffusion models under the Continuous Time Markov Chain (CTMC) framework.
We introduce a discrete-time sampling algorithm in the general state space $[S]d$ that utilizes score estimators at predefined time points.
Our convergence analysis employs a Girsanov-based method and establishes key properties of the discrete score function.
arXiv Detail & Related papers (2024-10-03T09:07:13Z) - Ensemble Transport Filter via Optimized Maximum Mean Discrepancy [0.0]
We present a new ensemble-based filter method by reconstructing the analysis step of the particle filter through a transport map.
The transport map is constructed through an optimization problem described by the Maximum Mean Discrepancy loss function.
A few numerical examples are presented to illustrate the advantage of the proposed method over the ensemble Kalman filter.
arXiv Detail & Related papers (2024-07-16T08:54:12Z) - Closed-form Filtering for Non-linear Systems [83.91296397912218]
We propose a new class of filters based on Gaussian PSD Models, which offer several advantages in terms of density approximation and computational efficiency.
We show that filtering can be efficiently performed in closed form when transitions and observations are Gaussian PSD Models.
Our proposed estimator enjoys strong theoretical guarantees, with estimation error that depends on the quality of the approximation and is adaptive to the regularity of the transition probabilities.
arXiv Detail & Related papers (2024-02-15T08:51:49Z) - Nonlinear Filtering with Brenier Optimal Transport Maps [4.745059103971596]
This paper is concerned with the problem of nonlinear filtering, i.e., computing the conditional distribution of the state of a dynamical system.
Conventional sequential importance resampling (SIR) particle filters suffer from fundamental limitations, in scenarios involving degenerate likelihoods or high-dimensional states.
In this paper, we explore an alternative method, which is based on estimating the Brenier optimal transport (OT) map from the current prior distribution of the state to the posterior distribution at the next time step.
arXiv Detail & Related papers (2023-10-21T01:34:30Z) - Continuous-time Particle Filtering for Latent Stochastic Differential
Equations [37.51802583388233]
We propose continuous latent particle filters, an approach that extends particle filtering to the continuous-time domain.
We demonstrate how continuous latent particle filters can be used as a generic plug-in replacement for inference techniques relying on a learned variational posterior.
arXiv Detail & Related papers (2022-09-01T01:05:31Z) - Computational Doob's h-transforms for Online Filtering of Discretely
Observed Diffusions [65.74069050283998]
We propose a computational framework to approximate Doob's $h$-transforms.
The proposed approach can be orders of magnitude more efficient than state-of-the-art particle filters.
arXiv Detail & Related papers (2022-06-07T15:03:05Z) - Deep Learning for the Benes Filter [91.3755431537592]
We present a new numerical method based on the mesh-free neural network representation of the density of the solution of the Benes model.
We discuss the role of nonlinearity in the filtering model equations for the choice of the domain of the neural network.
arXiv Detail & Related papers (2022-03-09T14:08:38Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - When is Particle Filtering Efficient for Planning in Partially Observed
Linear Dynamical Systems? [60.703816720093016]
This paper initiates a study on the efficiency of particle filtering for sequential planning.
We are able to bound the number of particles needed so that the long-run reward of the policy based on particle filtering is close to that based on exact inference.
We believe this technique can be useful in other sequential decision-making problems.
arXiv Detail & Related papers (2020-06-10T17:43:43Z) - Multiplicative Gaussian Particle Filter [18.615555573235987]
We propose a new sampling-based approach for approximate inference in filtering problems.
Instead of approximating conditional distributions with a finite set of states, as done in particle filters, our approach approximates the distribution with a weighted sum of functions from a set of continuous functions.
arXiv Detail & Related papers (2020-02-29T09:19:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.