Quantum Approximate Optimization for Hard Problems in Linear Algebra
- URL: http://arxiv.org/abs/2006.15438v3
- Date: Sat, 24 Apr 2021 23:02:03 GMT
- Title: Quantum Approximate Optimization for Hard Problems in Linear Algebra
- Authors: Ajinkya Borle, Vincent E. Elfving, Samuel J. Lomonaco
- Abstract summary: We explore using QAOA for Binary Linear Least Squares (BLLS) as a building block of several other hard problems in linear algebra.
For the scope of this work, our experiments were done on noiseless quantum simulators, a simulator including a device-realistic noise-model, and two IBM Q 5-qubit machines.
Our numerics show that Simulated Annealing can outperform QAOA for BLLS at a QAOA depth of $pleq3$ for the probability of sampling the ground state.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Quantum Approximate Optimization Algorithm (QAOA) by Farhi et al. is a
quantum computational framework for solving quantum or classical optimization
tasks. Here, we explore using QAOA for Binary Linear Least Squares (BLLS); a
problem that can serve as a building block of several other hard problems in
linear algebra, such as the Non-negative Binary Matrix Factorization (NBMF) and
other variants of the Non-negative Matrix Factorization (NMF) problem. Most of
the previous efforts in quantum computing for solving these problems were done
using the quantum annealing paradigm. For the scope of this work, our
experiments were done on noiseless quantum simulators, a simulator including a
device-realistic noise-model, and two IBM Q 5-qubit machines. We highlight the
possibilities of using QAOA and QAOA-like variational algorithms for solving
such problems, where trial solutions can be obtained directly as samples,
rather than being amplitude-encoded in the quantum wavefunction. Our numerics
show that Simulated Annealing can outperform QAOA for BLLS at a QAOA depth of
$p\leq3$ for the probability of sampling the ground state. Finally, we point
out some of the challenges involved in current-day experimental implementations
of this technique on cloud-based quantum computers.
Related papers
- Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Multi-sequence alignment using the Quantum Approximate Optimization
Algorithm [0.0]
We present a Hamiltonian formulation and implementation of the Multiple Sequence Alignment problem with the variational Quantum Approximate Optimization Algorithm (QAOA)
We consider a small instance of our QAOA-MSA algorithm in both a quantum simulator and its performance on an actual quantum computer.
While the ideal solution to the instance of MSA investigated is shown to be the most probable state sampled for a shallow p5 quantum circuit, the level of noise in current devices is still a formidable challenge.
arXiv Detail & Related papers (2023-08-23T12:46:24Z) - A Quantum Approach for Stochastic Constrained Binary Optimization [2.6803492658436032]
Quantum-based algorithms have been shown to generate high-quality solutions to hard problems.
This work puts forth quantum vectors to cope with binary quadratically constrained programs.
The method builds upon dual decomposition and entails solving a sequence of judiciously modified standard VQE tasks.
arXiv Detail & Related papers (2023-01-04T04:24:26Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Multi-round QAOA and advanced mixers on a trapped-ion quantum computer [0.0]
Combinatorial optimization problems on graphs have broad applications in science and engineering.
The Quantum Approximate Optimization Algorithm (QAOA) is a method to solve these problems on a quantum computer by applying multiple rounds of variational circuits.
In this paper, we demonstrate on a trapped-ion quantum computer that QAOA results improve with the number of rounds for multiple problems on several arbitrary graphs.
arXiv Detail & Related papers (2022-01-28T18:57:14Z) - Model-Independent Error Mitigation in Parametric Quantum Circuits and
Depolarizing Projection of Quantum Noise [1.5162649964542718]
Finding ground states and low-lying excitations of a given Hamiltonian is one of the most important problems in many fields of physics.
quantum computing on Noisy Intermediate-Scale Quantum (NISQ) devices offers the prospect to efficiently perform such computations.
Current quantum devices still suffer from inherent quantum noise.
arXiv Detail & Related papers (2021-11-30T16:08:01Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
arXiv Detail & Related papers (2021-07-11T10:56:24Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - Q-Match: Iterative Shape Matching via Quantum Annealing [64.74942589569596]
Finding shape correspondences can be formulated as an NP-hard quadratic assignment problem (QAP)
This paper proposes Q-Match, a new iterative quantum method for QAPs inspired by the alpha-expansion algorithm.
Q-Match can be applied for shape matching problems iteratively, on a subset of well-chosen correspondences, allowing us to scale to real-world problems.
arXiv Detail & Related papers (2021-05-06T17:59:38Z) - Simulating a ring-like Hubbard system with a quantum computer [0.0]
We develop a workflow to use current quantum computing hardware for solving quantum many-body problems.
We study a four-site Hubbard ring that exhibits a transition from a product state to an intrinsically interacting ground state as hopping amplitudes are changed.
We locate this transition and solve for the ground state energy with high quantitative accuracy using a variational quantum algorithm executed on an IBM quantum computer.
arXiv Detail & Related papers (2021-04-13T18:08:09Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.