Multi-round QAOA and advanced mixers on a trapped-ion quantum computer
- URL: http://arxiv.org/abs/2201.12335v1
- Date: Fri, 28 Jan 2022 18:57:14 GMT
- Title: Multi-round QAOA and advanced mixers on a trapped-ion quantum computer
- Authors: Yingyue Zhu, Zewen Zhang, Bhuvanesh Sundar, Alaina M. Green, C. Huerta
Alderete, Nhung H. Nguyen, Kaden R. A. Hazzard, Norbert M. Linke
- Abstract summary: Combinatorial optimization problems on graphs have broad applications in science and engineering.
The Quantum Approximate Optimization Algorithm (QAOA) is a method to solve these problems on a quantum computer by applying multiple rounds of variational circuits.
In this paper, we demonstrate on a trapped-ion quantum computer that QAOA results improve with the number of rounds for multiple problems on several arbitrary graphs.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Combinatorial optimization problems on graphs have broad applications in
science and engineering. The Quantum Approximate Optimization Algorithm (QAOA)
is a method to solve these problems on a quantum computer by applying multiple
rounds of variational circuits. However, there exist several challenges
limiting the real-world applications of QAOA. In this paper, we demonstrate on
a trapped-ion quantum computer that QAOA results improve with the number of
rounds for multiple problems on several arbitrary graphs. We also demonstrate
an advanced mixing Hamiltonian that allows sampling of all optimal solutions
with predetermined weights. Our results are a step towards applying quantum
algorithms to real-world problems.
Related papers
- Variational Quantum Algorithms for Combinatorial Optimization [0.571097144710995]
Variational Algorithms (VQA) have emerged as one of the strongest candidates towards reaching practical applicability of NISQ systems.
This paper explores the current state and recent developments of VQAs, emphasizing their applicability to Approximate optimization.
We implement QAOA circuits with varying depths to solve the MaxCut problem on graphs with 10 and 20 nodes.
arXiv Detail & Related papers (2024-07-08T22:02:39Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - Squeezing and quantum approximate optimization [0.6562256987706128]
Variational quantum algorithms offer fascinating prospects for the solution of optimization problems using digital quantum computers.
However, the achievable performance in such algorithms and the role of quantum correlations therein remain unclear.
We show numerically as well as on an IBM quantum chip how highly squeezed states are generated in a systematic procedure.
arXiv Detail & Related papers (2022-05-20T18:00:06Z) - Efficient Use of Quantum Linear System Algorithms in Interior Point
Methods for Linear Optimization [0.0]
We develop an Inexact Infeasible Quantum Interior Point Method to solve linear optimization problems.
We also discuss how can we get an exact solution by Iterative Refinement without excessive time of quantum solvers.
arXiv Detail & Related papers (2022-05-02T21:30:56Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - Quantum Approximate Optimization for Hard Problems in Linear Algebra [0.0]
We explore using QAOA for Binary Linear Least Squares (BLLS) as a building block of several other hard problems in linear algebra.
For the scope of this work, our experiments were done on noiseless quantum simulators, a simulator including a device-realistic noise-model, and two IBM Q 5-qubit machines.
Our numerics show that Simulated Annealing can outperform QAOA for BLLS at a QAOA depth of $pleq3$ for the probability of sampling the ground state.
arXiv Detail & Related papers (2020-06-27T20:13:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.