Quantum retrodiction made fully symmetric
- URL: http://arxiv.org/abs/2006.15692v1
- Date: Sun, 28 Jun 2020 19:58:46 GMT
- Title: Quantum retrodiction made fully symmetric
- Authors: Dov Fields, Abdelali Sajia, and J\'anos A. Bergou
- Abstract summary: We develop a general theory yielding a symmetric formalism for arbitrary sources.
We show how this formalism leads to a symmetric formulation of the communication channel between Alice and Bob.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum retrodiction is a time-symmetric approach to quantum mechanics with
applications in a number of important problems. One of the major challenges to
its more widespread applicability is the restriction of its symmetric formalism
to unbiased sources. The main result of this paper is to develop a general
theory yielding a symmetric formalism for arbitrary sources. We then highlight
on a specific example, by presenting the optimal solution to the retrodiction
problem that is dual to unambiguous state discrimination, how the generalized
approach works. We also show how this formalism leads to a symmetric
formulation of the communication channel between Alice and Bob and point to the
intrinsic connection between retrodiction and the no-signaling principle.
Related papers
- Predicting symmetries of quantum dynamics with optimal samples [41.42817348756889]
Identifying symmetries in quantum dynamics is a crucial challenge with profound implications for quantum technologies.
We introduce a unified framework combining group representation theory and subgroup hypothesis testing to predict these symmetries with optimal efficiency.
We prove that parallel strategies achieve the same performance as adaptive or indefinite-causal-order protocols.
arXiv Detail & Related papers (2025-02-03T15:57:50Z) - Entanglement asymmetry in conformal field theory and holography [0.0]
Entanglement asymmetry is a measure of symmetry breaking in quantum subsystems.
We study the asymmetry of a class of excited "coherent states" in conformal quantum field theories with a U(1) symmetry.
arXiv Detail & Related papers (2024-07-10T18:08:27Z) - Reliable Quantum Communications based on Asymmetry in Distillation and Coding [35.693513369212646]
We address the problem of reliable provision of entangled qubits in quantum computing schemes.
We combine indirect transmission based on teleportation and distillation; (2) direct transmission, based on quantum error correction (QEC)
Our results show that ad-hoc asymmetric codes give, compared to conventional QEC, a performance boost and codeword size reduction both in a single link and in a quantum network scenario.
arXiv Detail & Related papers (2023-05-01T17:13:23Z) - Quantum Causal Inference in the Presence of Hidden Common Causes: an
Entropic Approach [34.77250498401055]
We put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles.
We apply our proposed framework to an experimentally relevant scenario of identifying message senders on quantum noisy links.
This approach can lay the foundations of identifying originators of malicious activity on future multi-node quantum networks.
arXiv Detail & Related papers (2021-04-24T22:45:50Z) - $\PT$ Symmetry and Renormalisation in Quantum Field Theory [62.997667081978825]
Quantum systems governed by non-Hermitian Hamiltonians with $PT$ symmetry are special in having real energy eigenvalues bounded below and unitary time evolution.
We show how $PT$ symmetry may allow interpretations that evade ghosts and instabilities present in an interpretation of the theory within a Hermitian framework.
arXiv Detail & Related papers (2021-03-27T09:46:36Z) - Symmetric distinguishability as a quantum resource [21.071072991369824]
We develop a resource theory of symmetric distinguishability, the fundamental objects of which are elementary quantum information sources.
We study the resource theory for two different classes of free operations: $(i)$ $rmCPTP_A$, which consists of quantum channels acting only on $A$, and $(ii)$ conditional doubly (CDS) maps acting on $XA$.
arXiv Detail & Related papers (2021-02-24T19:05:02Z) - Asymmetry-induced nonclassical correlation [1.5630592429258865]
We establish the resource theory of asymmetry using quantum Fisher information (QFI)
By defining the average Fisher information as a measure of asymmetry, it is shown that the discrepancy of bipartite global and local asymmetries naturally induces the nonclassical correlation between the subsystems.
arXiv Detail & Related papers (2021-01-11T06:15:14Z) - Quantum Error Mitigation using Symmetry Expansion [0.0]
Noise remains the biggest challenge for the practical applications of any near-term quantum devices.
We develop a general framework named symmetry expansion which provides a wide spectrum of symmetry-based error mitigation schemes.
We show that certain symmetry expansion schemes can achieve a smaller estimation bias than symmetry verification.
arXiv Detail & Related papers (2021-01-08T18:30:48Z) - Emergence of Constructor-based Irreversibility in Quantum Systems:
Theory and Experiment [0.0]
We show that irreversibility in a universe with time-reversal-symmetric laws is compatible with quantum theory's time reversal symmetric laws.
We exploit a specific model, based on the universal quantum homogeniser, realised experimentally with high-quality single-photon qubits.
arXiv Detail & Related papers (2020-09-30T12:57:39Z) - Fluctuation theorems from Bayesian retrodiction [2.28438857884398]
We show that the reverse channel very naturally arises from Bayesian retrodiction, both in classical and quantum theories.
More generally, with the reverse process constructed on consistent logical inference, fluctuation relations acquire a much broader form and scope.
arXiv Detail & Related papers (2020-09-07T01:42:05Z) - Quantum-optimal-control-inspired ansatz for variational quantum
algorithms [105.54048699217668]
A central component of variational quantum algorithms (VQA) is the state-preparation circuit, also known as ansatz or variational form.
Here, we show that this approach is not always advantageous by introducing ans"atze that incorporate symmetry-breaking unitaries.
This work constitutes a first step towards the development of a more general class of symmetry-breaking ans"atze with applications to physics and chemistry problems.
arXiv Detail & Related papers (2020-08-03T18:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.