論文の概要: Shape from Projections via Differentiable Forward Projector for Computed
Tomography
- arxiv url: http://arxiv.org/abs/2006.16120v4
- Date: Thu, 11 Mar 2021 08:31:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-15 15:16:55.608575
- Title: Shape from Projections via Differentiable Forward Projector for Computed
Tomography
- Title(参考訳): ct用微分可能な前方プロジェクタによる投影からの形状
- Authors: Jakeoung Koo, Anders B. Dahl, J. Andreas B{\ae}rentzen, Qiongyang
Chen, Sara Bals, Vedrana A. Dahl
- Abstract要約: 本稿では,3次元メッシュのフォワードモデルと最適化のギャップを埋める3次元メッシュの微分可能フォワードモデルを提案する。
提案した前方モデルを用いて,プロジェクションから直接3次元形状を再構成する。
単目的問題に対する実験結果から,提案手法はノイズシミュレーションデータ上で従来のボクセル法よりも優れていることがわかった。
- 参考スコア(独自算出の注目度): 4.304380400377787
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In computed tomography, the reconstruction is typically obtained on a voxel
grid. In this work, however, we propose a mesh-based reconstruction method. For
tomographic problems, 3D meshes have mostly been studied to simulate data
acquisition, but not for reconstruction, for which a 3D mesh means the inverse
process of estimating shapes from projections. In this paper, we propose a
differentiable forward model for 3D meshes that bridge the gap between the
forward model for 3D surfaces and optimization. We view the forward projection
as a rendering process, and make it differentiable by extending recent work in
differentiable rendering. We use the proposed forward model to reconstruct 3D
shapes directly from projections. Experimental results for single-object
problems show that the proposed method outperforms traditional voxel-based
methods on noisy simulated data. We also apply the proposed method on electron
tomography images of nanoparticles to demonstrate the applicability of the
method on real data.
- Abstract(参考訳): 計算トモグラフィーでは、この再構成は通常、ボクセル格子上で得られる。
本研究では,メッシュを用いた再構成手法を提案する。
トモグラフィー問題では、データ取得をシミュレートするために3Dメッシュが研究されているが、再構成のためのものではなく、3Dメッシュはプロジェクションから形状を推定する逆過程を意味する。
本稿では, 3次元表面の前方モデルと最適化とのギャップを埋める3次元メッシュのための微分可能な前方モデルを提案する。
我々は、フォワードプロジェクションをレンダリングプロセスとみなし、最近の作業を差別化可能なレンダリングで拡張することで差別化できるようにする。
提案するフォワードモデルを用いて投影から直接3次元形状を再構成する。
単目的問題に対する実験結果から,提案手法はノイズシミュレーションデータ上で従来のボクセル法よりも優れていることがわかった。
また,提案手法をナノ粒子の電子トモグラフィー画像に適用し,実データに適用可能であることを示す。
関連論文リスト
- Personalized 3D Human Pose and Shape Refinement [19.082329060985455]
回帰に基づく手法は3次元人間のポーズと形状推定の分野を支配してきた。
本稿では,初期人間のモデル推定値と対応する画像との密接な対応性を構築することを提案する。
提案手法は画像モデルアライメントの改善だけでなく,3次元精度の向上にも寄与する。
論文 参考訳(メタデータ) (2024-03-18T10:13:53Z) - Disjoint Pose and Shape for 3D Face Reconstruction [4.096453902709292]
本稿では,ポーズと形状の相違を解消し,最適化を安定かつ正確にするためのエンドツーエンドパイプラインを提案する。
提案手法は, エンドツーエンドのトポロジ的整合性を実現し, 反復的な顔ポーズ改善を可能とし, 定量的および定性的な結果の両面で顕著な改善を示した。
論文 参考訳(メタデータ) (2023-08-26T15:18:32Z) - Unsupervised 3D Pose Estimation with Non-Rigid Structure-from-Motion
Modeling [83.76377808476039]
本研究では,人間のポーズの変形をモデル化し,それに伴う拡散に基づく動きを事前に設計する手法を提案する。
動作中の3次元人間の骨格を復元する作業は3次元基準骨格の推定に分割する。
混合時空間NASfMformerを用いて、各フレームの3次元基準骨格と骨格変形を2次元観測シーケンスから同時に推定する。
論文 参考訳(メタデータ) (2023-08-18T16:41:57Z) - MeshDiffusion: Score-based Generative 3D Mesh Modeling [68.40770889259143]
本研究では,シーンの自動生成と物理シミュレーションのための現実的な3次元形状生成の課題について考察する。
メッシュのグラフ構造を利用して、3Dメッシュを生成するのにシンプルだが非常に効果的な生成モデリング手法を用いる。
具体的には、変形可能な四面体格子でメッシュを表現し、この直接パラメトリゼーション上で拡散モデルを訓練する。
論文 参考訳(メタデータ) (2023-03-14T17:59:01Z) - Solving 3D Inverse Problems using Pre-trained 2D Diffusion Models [33.343489006271255]
拡散モデルは、高品質なサンプルを持つ新しい最先端の生成モデルとして登場した。
そこで本研究では, モデルに基づく2次元拡散を, 全次元にわたるコヒーレントな再構成を達成できるように, 実験時の残りの方向で先行する2次元拡散を拡大することを提案する。
提案手法は,1つのコモディティGPU上で動作可能であり,新しい最先端技術を確立する。
論文 参考訳(メタデータ) (2022-11-19T10:32:21Z) - NeuralMeshing: Differentiable Meshing of Implicit Neural Representations [63.18340058854517]
ニューラルな暗黙表現から表面メッシュを抽出する新しい微分可能なメッシュアルゴリズムを提案する。
本手法は,通常のテッセルレーションパターンと,既存の手法に比べて三角形面の少ないメッシュを生成する。
論文 参考訳(メタデータ) (2022-10-05T16:52:25Z) - Uncertainty Guided Policy for Active Robotic 3D Reconstruction using
Neural Radiance Fields [82.21033337949757]
本稿では,物体の暗黙のニューラル表現の各光線に沿ったカラーサンプルの重量分布のエントロピーを計算した線量不確実性推定器を提案する。
提案した推定器を用いた新しい視点から, 基礎となる3次元形状の不確かさを推測することが可能であることを示す。
ニューラルラディアンス場に基づく表現における線量不確実性によって導かれる次ベクター選択ポリシーを提案する。
論文 参考訳(メタデータ) (2022-09-17T21:28:57Z) - Pixel2Mesh++: 3D Mesh Generation and Refinement from Multi-View Images [82.32776379815712]
カメラポーズの有無にかかわらず、少数のカラー画像から3次元メッシュ表現における形状生成の問題について検討する。
我々は,グラフ畳み込みネットワークを用いたクロスビュー情報を活用することにより,形状品質をさらに向上する。
我々のモデルは初期メッシュの品質とカメラポーズの誤差に頑健であり、テスト時間最適化のための微分関数と組み合わせることができる。
論文 参考訳(メタデータ) (2022-04-21T03:42:31Z) - Data-Driven Shadowgraph Simulation of a 3D Object [50.591267188664666]
我々は、数値コードをより安価でプロジェクションベースのサロゲートモデルに置き換えている。
このモデルは、数値的な方法で必要となるすべての前の電場を計算することなく、所定の時間で電場を近似することができる。
このモデルでは, シミュレーションパラメータの狭い範囲におけるデータの摂動問題において, 高品質な再構成が示されており, 大規模な入力データに利用することができる。
論文 参考訳(メタデータ) (2021-06-01T08:46:04Z) - An Effective Loss Function for Generating 3D Models from Single 2D Image
without Rendering [0.0]
微分レンダリングは、シングルビュー3Dレコンストラクションに適用できる非常に成功した技術である。
電流は、ある3d再構成対象のレンダリング画像と、与えられたマッチング視点からの接地画像との間のピクセルによる損失を利用して、3d形状のパラメータを最適化する。
再構成された3次元点群の投影が地上真理物体のシルエットをどの程度覆うかを評価する新しい効果的な損失関数を提案する。
論文 参考訳(メタデータ) (2021-03-05T00:02:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。