論文の概要: Personalized 3D Human Pose and Shape Refinement
- arxiv url: http://arxiv.org/abs/2403.11634v1
- Date: Mon, 18 Mar 2024 10:13:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 15:47:44.299177
- Title: Personalized 3D Human Pose and Shape Refinement
- Title(参考訳): パーソナライズされた3Dヒューマンポーズと形状のリファインメント
- Authors: Tom Wehrbein, Bodo Rosenhahn, Iain Matthews, Carsten Stoll,
- Abstract要約: 回帰に基づく手法は3次元人間のポーズと形状推定の分野を支配してきた。
本稿では,初期人間のモデル推定値と対応する画像との密接な対応性を構築することを提案する。
提案手法は画像モデルアライメントの改善だけでなく,3次元精度の向上にも寄与する。
- 参考スコア(独自算出の注目度): 19.082329060985455
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, regression-based methods have dominated the field of 3D human pose and shape estimation. Despite their promising results, a common issue is the misalignment between predictions and image observations, often caused by minor joint rotation errors that accumulate along the kinematic chain. To address this issue, we propose to construct dense correspondences between initial human model estimates and the corresponding images that can be used to refine the initial predictions. To this end, we utilize renderings of the 3D models to predict per-pixel 2D displacements between the synthetic renderings and the RGB images. This allows us to effectively integrate and exploit appearance information of the persons. Our per-pixel displacements can be efficiently transformed to per-visible-vertex displacements and then used for 3D model refinement by minimizing a reprojection loss. To demonstrate the effectiveness of our approach, we refine the initial 3D human mesh predictions of multiple models using different refinement procedures on 3DPW and RICH. We show that our approach not only consistently leads to better image-model alignment, but also to improved 3D accuracy.
- Abstract(参考訳): 近年,レグレッションに基づく手法が人間の3次元ポーズと形状推定の分野を支配している。
その有望な結果にもかかわらず、一般的な問題は、予測と画像観察のミスアライメントであり、しばしば運動連鎖に沿って蓄積される小さな関節回転誤差によって引き起こされる。
この問題に対処するために,初期人間のモデル推定値とそれに対応する画像との密接な対応性を構築することを提案する。
この目的のために, 合成レンダリングとRGB画像間の画素あたりの2次元変位を予測するために, 3次元モデルのレンダリングを利用する。
これにより、人物の外観情報を効果的に統合し、活用することができる。
画素あたりの変位を視覚的頂点変位に効率よく変換し、再投射損失を最小化して3次元モデル精細化に利用することができる。
提案手法の有効性を示すために,3DPW と RICH の異なる改良手法を用いて,複数のモデルの初期の3次元メッシュ予測を洗練する。
提案手法は画像モデルアライメントの改善だけでなく,3次元精度の向上にも寄与する。
関連論文リスト
- UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3Dは多視点人間のポーズ推定のための新しいアプローチである。
直接的な3Dアノテーションを必要とせずに、堅牢性と柔軟性を向上させる。
論文 参考訳(メタデータ) (2024-04-23T00:18:00Z) - Learned Vertex Descent: A New Direction for 3D Human Model Fitting [64.04726230507258]
画像やスキャンに適合する3次元人体モデルのための新しい最適化手法を提案する。
われわれのアプローチは、非常に異なる体型を持つ服を着た人々の基盤となる身体を捉えることができ、最先端技術と比べて大きな改善を達成できる。
LVDはまた、人間と手の3次元モデル適合にも適用でき、よりシンプルで高速な方法でSOTAに大きな改善が示される。
論文 参考訳(メタデータ) (2022-05-12T17:55:51Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
本稿では、2つの出力ヘッドを2つの異なる構成にサブスクライブする共通のディープネットワークバックボーンを構成するMPP-Netを紹介する。
ポーズと関節のレベルで予測の不確実性を定量化するための適切な尺度を導出する。
本稿では,提案手法の総合評価を行い,ベンチマークデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2022-03-29T07:14:58Z) - Adversarial Parametric Pose Prior [106.12437086990853]
我々は、SMPLパラメータを現実的なポーズを生成する値に制限する事前学習を行う。
得られた先行学習は実データ分布の多様性をカバーし、2次元キーポイントからの3次元再構成の最適化を容易にし、画像からの回帰に使用する場合のポーズ推定精度を向上することを示す。
論文 参考訳(メタデータ) (2021-12-08T10:05:32Z) - Camera Distortion-aware 3D Human Pose Estimation in Video with
Optimization-based Meta-Learning [23.200130129530653]
歪みのないデータセットでトレーニングされた既存の3次元ポーズ推定アルゴリズムは、特定のカメラ歪みのある新しいシナリオに適用した場合、パフォーマンス低下を被る。
本研究では, 歪み環境に迅速に適応できる簡易かつ効果的な3次元ポーズ推定モデルを提案する。
論文 参考訳(メタデータ) (2021-11-30T01:35:04Z) - Differentiable Rendering with Perturbed Optimizers [85.66675707599782]
2Dイメージプロジェクションから3Dシーンを推論することは、コンピュータビジョンにおける中核的な問題の一つだ。
我々の研究は、よく知られた微分可能な定式化とランダムなスムーズなレンダリングの関連性を強調している。
提案手法を3次元シーン再構成に適用し,その利点を6次元ポーズ推定と3次元メッシュ再構成の課題に適用した。
論文 参考訳(メタデータ) (2021-10-18T08:56:23Z) - Using Adaptive Gradient for Texture Learning in Single-View 3D
Reconstruction [0.0]
3次元モデル再構築のための学習ベースのアプローチは、現代の応用によって注目を集めている。
本稿では,サンプリング画像のばらつきに基づいて予測座標の勾配を最適化し,新しいサンプリングアルゴリズムを提案する。
また,frechetインセプション距離(fid)を用いて学習における損失関数を形成し,レンダリング画像と入力画像とのギャップを橋渡しする。
論文 参考訳(メタデータ) (2021-04-29T07:52:54Z) - PaMIR: Parametric Model-Conditioned Implicit Representation for
Image-based Human Reconstruction [67.08350202974434]
本研究では,パラメトリックボディモデルと自由形深部暗黙関数を組み合わせたパラメトリックモデル記述型暗黙表現(PaMIR)を提案する。
本手法は, 挑戦的なポーズや衣料品のタイプにおいて, 画像に基づく3次元再構築のための最先端性能を実現する。
論文 参考訳(メタデータ) (2020-07-08T02:26:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。