論文の概要: Large Deformation Diffeomorphic Image Registration with Laplacian
Pyramid Networks
- arxiv url: http://arxiv.org/abs/2006.16148v2
- Date: Tue, 30 Jun 2020 07:23:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-15 15:16:40.674201
- Title: Large Deformation Diffeomorphic Image Registration with Laplacian
Pyramid Networks
- Title(参考訳): ラプラシアンピラミッド網を用いた大規模変形拡散画像登録
- Authors: Tony C. W. Mok and Albert C. S. Chung
- Abstract要約: 本稿では,画像登録最適化問題を解くために,ラプラシアンピラミッド画像登録ネットワークを提案する。
提案手法は, 良好な微分特性と有望な登録速度を維持しつつ, 既存の手法よりも有意なマージンで性能を向上する。
- 参考スコア(独自算出の注目度): 11.4219428942199
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based methods have recently demonstrated promising results in
deformable image registration for a wide range of medical image analysis tasks.
However, existing deep learning-based methods are usually limited to small
deformation settings, and desirable properties of the transformation including
bijective mapping and topology preservation are often being ignored by these
approaches. In this paper, we propose a deep Laplacian Pyramid Image
Registration Network, which can solve the image registration optimization
problem in a coarse-to-fine fashion within the space of diffeomorphic maps.
Extensive quantitative and qualitative evaluations on two MR brain scan
datasets show that our method outperforms the existing methods by a significant
margin while maintaining desirable diffeomorphic properties and promising
registration speed.
- Abstract(参考訳): 深層学習に基づく手法は, 幅広い医用画像解析タスクにおいて, 変形可能な画像登録の有望な結果を示した。
しかし,既存の深層学習に基づく手法は小さな変形設定に限られることが多いため,これらの手法では,客観的なマッピングやトポロジー保存を含む変換の望ましい特性が無視されることが多い。
本稿では, 微分写像空間内の粗大かつ微細な方法で, 画像登録最適化問題を解くことができる, 深層ラプラシアピラミッド画像登録ネットワークを提案する。
2つのMR脳スキャンデータセットの大規模定量および定性的評価は,本手法が望ましい微分特性と有望な登録速度を維持しつつ,既存の手法よりも有意なマージンで優れていることを示す。
関連論文リスト
- Joint segmentation and discontinuity-preserving deformable registration:
Application to cardiac cine-MR images [74.99415008543276]
多くの深層学習に基づく登録法は、変形場は画像領域の至る所で滑らかで連続的であると仮定する。
本研究では,この課題に対処するために,不連続かつ局所的に滑らかな変形場を確保するための新しい不連続保存画像登録手法を提案する。
入力画像の構造的相関を学習するために,ネットワークのセグメンテーション成分にコアテンションブロックを提案する。
大規模心磁気共鳴画像系列を用いた物体内時間画像登録の課題について検討した。
論文 参考訳(メタデータ) (2022-11-24T23:45:01Z) - A training-free recursive multiresolution framework for diffeomorphic
deformable image registration [6.929709872589039]
変形可能な画像登録のための新しい微分型学習自由アプローチを提案する。
提案するアーキテクチャは設計上は単純で,各解像度で移動像を順次ワープし,最終的に固定像に整列する。
システム全体はエンドツーエンドで、スクラッチから各2つのイメージに最適化されている。
論文 参考訳(メタデータ) (2022-02-01T15:17:17Z) - DiffuseMorph: Unsupervised Deformable Image Registration Along
Continuous Trajectory Using Diffusion Models [31.826844124173984]
DiffuseMorphと呼ばれる拡散モデルに基づく新しい確率的画像登録手法を提案する。
本モデルは,動画像と固定画像の変形のスコア関数を学習する。
本手法は, トポロジー保存機能により, 柔軟かつ高精度な変形を可能とする。
論文 参考訳(メタデータ) (2021-12-09T08:41:23Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
本稿では,これらの用語を暗黙的にモデル化する識別的縮小関数を学習することで,効果的に非盲検デコンボリューション手法を提案する。
実験結果から,提案手法は最先端の手法に対して,効率と精度の点で好適に動作することがわかった。
論文 参考訳(メタデータ) (2021-11-27T12:12:57Z) - A Deep Discontinuity-Preserving Image Registration Network [73.03885837923599]
ほとんどの深層学習に基づく登録法は、所望の変形場が全世界的に滑らかで連続的であると仮定する。
本稿では、より優れた登録性能とリアルな変形場を得るために、弱い教師付き深部不連続保存画像登録ネットワーク(DDIR)を提案する。
本研究では, 心臓磁気共鳴(MR)画像の登録実験において, 登録精度を大幅に向上し, より現実的な変形を予測できることを実証した。
論文 参考訳(メタデータ) (2021-07-09T13:35:59Z) - LocalTrans: A Multiscale Local Transformer Network for Cross-Resolution
Homography Estimation [52.63874513999119]
クロスレゾリューション画像アライメントは、マルチスケールギガ撮影において重要な問題である。
既存のディープ・ホモグラフィー手法は、それらの間の対応の明示的な定式化を無視し、クロスレゾリューションの課題において精度が低下する。
本稿では,マルチモーダル入力間の対応性を明確に学習するために,マルチスケール構造内に埋め込まれたローカルトランスフォーマーネットワークを提案する。
論文 参考訳(メタデータ) (2021-06-08T02:51:45Z) - Unsupervised Multimodal Image Registration with Adaptative Gradient
Guidance [23.461130560414805]
教師なし学習に基づく手法は、変形可能な画像登録における精度と効率よりも有望な性能を示す。
既存の手法の予測変形場は、登録済み画像対に完全に依存する。
両モデルから推定される変形場を利用する新しい多モード登録フレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-12T05:47:20Z) - An Auto-Context Deformable Registration Network for Infant Brain MRI [54.57017031561516]
本稿では, 自動文脈戦略を用いて変形場を段階的に洗練する幼児向け深層登録ネットワークを提案する。
本手法は, 繰り返し変形改善のために1つのネットワークを複数回呼び出すことにより, 変形場を推定する。
現状登録法との比較実験の結果, 変形場の滑らかさを保ちながら, 高い精度を達成できることが示唆された。
論文 参考訳(メタデータ) (2020-05-19T06:00:13Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
マルチスケールの伝搬により微分同相モデルを最適化する,新しいディープラーニングベースのフレームワークを開発した。
我々は,脳MRIデータにおける画像-アトラス登録,肝CTデータにおける画像-画像登録を含む,3次元ボリュームデータセットにおける画像登録実験の2つのグループを実行する。
論文 参考訳(メタデータ) (2020-04-30T03:23:45Z) - Fast Symmetric Diffeomorphic Image Registration with Convolutional
Neural Networks [11.4219428942199]
本稿では,新しい非教師付き対称画像登録手法を提案する。
大規模脳画像データセットを用いた3次元画像登録法について検討した。
論文 参考訳(メタデータ) (2020-03-20T22:07:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。