論文の概要: Inference in Bayesian Additive Vector Autoregressive Tree Models
- arxiv url: http://arxiv.org/abs/2006.16333v2
- Date: Tue, 9 Mar 2021 12:29:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-15 15:16:06.818658
- Title: Inference in Bayesian Additive Vector Autoregressive Tree Models
- Title(参考訳): ベイズ加法ベクトル自己回帰木モデルにおける推論
- Authors: Florian Huber and Luca Rossini
- Abstract要約: 本稿では,Vector Autoregressive(VAR)モデルとBayesian Additive regression Tree(BART)モデルを組み合わせることを提案する。
得られたBAVARTモデルは、研究者から多くを入力することなく、任意の非線形関係をキャプチャすることができる。
我々は、米国の金利構造とユーロ圏経済という2つのデータセットに適用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vector autoregressive (VAR) models assume linearity between the endogenous
variables and their lags. This assumption might be overly restrictive and could
have a deleterious impact on forecasting accuracy. As a solution, we propose
combining VAR with Bayesian additive regression tree (BART) models. The
resulting Bayesian additive vector autoregressive tree (BAVART) model is
capable of capturing arbitrary non-linear relations between the endogenous
variables and the covariates without much input from the researcher. Since
controlling for heteroscedasticity is key for producing precise density
forecasts, our model allows for stochastic volatility in the errors. We apply
our model to two datasets. The first application shows that the BAVART model
yields highly competitive forecasts of the US term structure of interest rates.
In a second application, we estimate our model using a moderately sized
Eurozone dataset to investigate the dynamic effects of uncertainty on the
economy.
- Abstract(参考訳): ベクトル自己回帰(VAR)モデルは内因性変数とラグの間の線形性を仮定する。
この仮定は過度に制限され、予測精度に有害な影響を与える可能性がある。
解法として、VARとベイジアン加法回帰木(BART)モデルの組み合わせを提案する。
ベイズ加法的ベクトル自己回帰木(BAVART)モデルは、内在変数と共変変数の間の任意の非線形関係を研究者から多くを入力することなく捉えることができる。
ヘテロシedasticityの制御は正確な密度予測の鍵となるため,誤差の確率的ボラティリティを許容する。
モデルは2つのデータセットに適用します。
第一の応用は、BAVARTモデルが米国の短期金利構造を高い競争力で予測することを示している。
第2のアプリケーションでは、不確実性が経済に与える影響を調べるために、適度なサイズのユーロ圏データセットを用いてモデルを推定する。
関連論文リスト
- Co-data Learning for Bayesian Additive Regression Trees [0.0]
本稿では,コデータから木間関係の予測モデルを構築することを提案する。
提案手法は複数のデータ型を同時に扱うことができる。
Co-dataは、大きなB細胞リンパ腫の予後を拡散させる用途における予測を強化する。
論文 参考訳(メタデータ) (2023-11-16T16:14:39Z) - Linked shrinkage to improve estimation of interaction effects in
regression models [0.0]
回帰モデルにおける双方向相互作用項によく適応する推定器を開発する。
我々は,選択戦略では難しい推論モデルの可能性を評価する。
私たちのモデルは、かなり大きなサンプルサイズであっても、ランダムな森林のような、より高度な機械学習者に対して非常に競争力があります。
論文 参考訳(メタデータ) (2023-09-25T10:03:39Z) - Rethinking Missing Data: Aleatoric Uncertainty-Aware Recommendation [59.500347564280204]
本稿では, Aleatoric Uncertainty-aware Recommendation (AUR) フレームワークを提案する。
AURは、新しい不確実性推定器と通常のレコメンデータモデルで構成されている。
誤ラベルの可能性がペアの可能性を反映しているため、AURは不確実性に応じてレコメンデーションを行う。
論文 参考訳(メタデータ) (2022-09-22T04:32:51Z) - Hierarchical Embedded Bayesian Additive Regression Trees [0.0]
HE-BARTは、レグレッションツリーのセットの終端ノードレベルにランダムエフェクトを含めることができる。
シミュレーションおよび実世界の例を用いて、HE-BARTは標準的な混合効果モデルのサンプルデータセットの多くに対して優れた予測が得られることを示した。
この論文の今後のバージョンでは、より大きく、より高度なデータセットと構造での使用について概説する。
論文 参考訳(メタデータ) (2022-04-14T19:56:03Z) - Benign-Overfitting in Conditional Average Treatment Effect Prediction
with Linear Regression [14.493176427999028]
線形回帰モデルを用いて条件平均処理効果(CATE)の予測における良性過剰適合理論について検討した。
一方,IPW-learnerは確率スコアが分かっていればリスクをゼロに収束させるが,T-learnerはランダムな割り当て以外の一貫性を達成できないことを示す。
論文 参考訳(メタデータ) (2022-02-10T18:51:52Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
多変量予測分布の条件パラメータを非パラメトリックにモデル化したNatural Gradient Boosting (NGBoost) 手法を提案する。
提案手法は頑健で, 広範囲なチューニングを伴わず, 推定対象分布に対してモジュール構造であり, 既存の手法と比較して競争力がある。
論文 参考訳(メタデータ) (2021-06-07T17:44:49Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - A Locally Adaptive Interpretable Regression [7.4267694612331905]
線形回帰は最も解釈可能な予測モデルの一つである。
本稿では,局所適応型解釈型回帰(LoAIR)を導入する。
我々のモデルは、他の最先端のベースラインと同等またはより良い予測性能を達成する。
論文 参考訳(メタデータ) (2020-05-07T09:26:14Z) - Nonparametric Estimation in the Dynamic Bradley-Terry Model [69.70604365861121]
カーネルのスムース化に依存する新しい推定器を開発し、時間とともにペア比較を前処理する。
モデルに依存しない設定における推定誤差と余剰リスクの両方について時間変化のオラクル境界を導出する。
論文 参考訳(メタデータ) (2020-02-28T21:52:49Z) - On the Discrepancy between Density Estimation and Sequence Generation [92.70116082182076]
log-likelihoodは、同じファミリー内のモデルを考えるとき、BLEUと非常に相関している。
異なる家族間でのモデルランキングの相関はみられない。
論文 参考訳(メタデータ) (2020-02-17T20:13:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。