論文の概要: BARTSIMP: flexible spatial covariate modeling and prediction using Bayesian additive regression trees
- arxiv url: http://arxiv.org/abs/2309.13270v2
- Date: Fri, 21 Feb 2025 00:12:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 23:09:30.534254
- Title: BARTSIMP: flexible spatial covariate modeling and prediction using Bayesian additive regression trees
- Title(参考訳): BARTSIMP:ベイズ加法回帰木を用いたフレキシブル空間共変量モデリングと予測
- Authors: Alex Ziyu Jiang, Jon Wakefield,
- Abstract要約: 本稿では,ガウス過程空間モデルとベイズ加法回帰木(BART)モデルの組み合わせについて検討する。
マルコフ連鎖モンテカルロとIntegrated Nested Laplace Approximation (INLA)技術を組み合わせることにより、アプローチの計算負担を低減させる。
次に、このモデルを用いてケニアの人文的反応を予測し、複雑なサンプリング設計を用いてデータを収集する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Prediction is a classic challenge in spatial statistics and the inclusion of spatial covariates can greatly improve predictive performance when incorporated into a model with latent spatial effects. It is desirable to develop flexible regression models that allow for nonlinearities and interactions in the covariate specification. Existing machine learning approaches that allow for spatial dependence in the residuals fail to provide reliable uncertainty estimates. In this paper, we investigate the combination of a Gaussian process spatial model with a Bayesian Additive Regression Tree (BART) model. The computational burden of the approach is reduced by combining Markov chain Monte Carlo (MCMC) with the Integrated Nested Laplace Approximation (INLA) technique. We study the performance of the method first via simulation. We then use the model to predict anthropometric responses in Kenya, with the data collected via a complex sampling design. In particular, household survey data are collected via stratified two-stage unequal probability cluster sampling, which requires special care when modeled.
- Abstract(参考訳): 予測は空間統計学において古典的な課題であり、空間共変量を含むことにより、潜在空間効果を持つモデルに組み込んだ場合の予測性能が大幅に向上する。
共変量仕様における非線形性と相互作用を可能にするフレキシブル回帰モデルを開発することが望ましい。
既存の機械学習アプローチでは、残差の空間的依存が確実な不確実性推定を提供することができない。
本稿では,ガウス過程空間モデルとベイズ加法回帰木(BART)モデルの組み合わせについて検討する。
マルコフ連鎖モンテカルロ(MCMC)とIntegrated Nested Laplace Approximation(INLA)技術を組み合わせることにより、アプローチの計算負担を低減させる。
まず,本手法の性能をシミュレーションにより検討する。
次に、このモデルを用いてケニアの人文的反応を予測し、複雑なサンプリング設計を用いてデータを収集する。
特に,2段階不均等クラスタサンプリングにより世帯調査データを収集し,モデル化時に特別なケアを必要とする。
関連論文リスト
- Embedded Nonlocal Operator Regression (ENOR): Quantifying model error in learning nonlocal operators [8.585650361148558]
本研究では,非局所的同化代理モデルとその構造モデル誤差を学習するための新しい枠組みを提案する。
このフレームワークは、長期シミュレーションにおける均質化材料応答予測のための離散性適応不確実性定量化を提供する。
論文 参考訳(メタデータ) (2024-10-27T04:17:27Z) - Bayesian Semi-structured Subspace Inference [0.0]
半構造回帰モデルは、解釈可能な構造と複雑な非構造的特徴効果の合同モデリングを可能にする。
部分空間推論を用いた半構造化回帰モデルに対するベイズ近似を提案する。
提案手法は,シミュレーションおよび実世界のデータセット間での競合予測性能を示す。
論文 参考訳(メタデータ) (2024-01-23T18:15:58Z) - Distributed Bayesian Learning of Dynamic States [65.7870637855531]
提案アルゴリズムは有限状態隠れマルコフモデルに対する分散ベイズフィルタタスクである。
逐次状態推定や、動的環境下でのソーシャルネットワーク上での意見形成のモデル化に使用できる。
論文 参考訳(メタデータ) (2022-12-05T19:40:17Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
モデルベースRL(MBRL)の非遅延性能保証のための新規で一般的な理論スキームを提案する。
続いて導いた境界は、モデルシフトとパフォーマンス改善の関係を明らかにします。
さらなる例では、動的に変化する探索からの学習モデルが、最終的なリターンの恩恵をもたらすことが示されている。
論文 参考訳(メタデータ) (2022-10-15T17:57:43Z) - Adaptive LASSO estimation for functional hidden dynamic geostatistical
model [69.10717733870575]
関数型隠れ統計モデル(f-HD)のためのペナル化極大推定器(PMLE)に基づく新しいモデル選択アルゴリズムを提案する。
このアルゴリズムは反復最適化に基づいており、適応最小限の収縮・セレクタ演算子(GMSOLAS)ペナルティ関数を用いており、これは不給付のf-HD最大線量推定器によって得られる。
論文 参考訳(メタデータ) (2022-08-10T19:17:45Z) - Dynamic Bayesian Network Auxiliary ABC-SMC for Hybrid Model Bayesian
Inference to Accelerate Biomanufacturing Process Mechanism Learning and
Robust Control [2.727760379582405]
本稿では,バイオプロセッシング機構の複雑な因果関係を特徴付ける知識グラフハイブリッドモデルを提案する。
非線形反応、部分的に観察された状態、非定常力学を含む重要な性質を忠実に捉えることができる。
我々は、メカニズム学習を容易にし、ロバストなプロセス制御を支援する後部分布モデルの不確かさを導出する。
論文 参考訳(メタデータ) (2022-05-05T02:54:21Z) - Modeling Massive Spatial Datasets Using a Conjugate Bayesian Linear
Regression Framework [0.0]
階層的モデリングフレームワークに簡単に組み込むことのできる、様々なスケーラブルな空間プロセスモデルが提案されている。
本稿では,空間過程の推論を迅速に行うことができる共役ベイズ線形回帰モデルとして,点参照空間過程モデルをどうキャストするかを論じる。
論文 参考訳(メタデータ) (2021-09-09T17:46:00Z) - Spatially and Robustly Hybrid Mixture Regression Model for Inference of
Spatial Dependence [15.988679065054498]
本研究では,空間領域上での応答変数と説明変数の集合との関係を検討するために,空間ロバスト混合回帰モデルを提案する。
本手法は, 空間的非定常性, 局所的均一性, 外れ値の同時処理を行うために, 空間的制約を伴う頑健な有限混合ガウス回帰モデルを統合する。
多くの合成および実世界のデータセットに対する実験結果から,提案手法のロバスト性,精度,有効性が確認された。
論文 参考訳(メタデータ) (2021-09-01T16:29:46Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Autoregressive Score Matching [113.4502004812927]
自動回帰条件スコアモデル(AR-CSM)を提案する。
AR-CSMモデルでは、このデータ分布とモデル分布のばらつきを効率的に計算し、最適化することができ、高価なサンプリングや対向訓練を必要としない。
本研究では,合成データに対する密度推定,画像生成,画像復調,暗黙エンコーダを用いた潜在変数モデルの訓練に応用できることを示す。
論文 参考訳(メタデータ) (2020-10-24T07:01:24Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。