論文の概要: Improving neural network predictions of material properties with limited
data using transfer learning
- arxiv url: http://arxiv.org/abs/2006.16420v1
- Date: Mon, 29 Jun 2020 22:34:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-15 15:33:43.624132
- Title: Improving neural network predictions of material properties with limited
data using transfer learning
- Title(参考訳): 伝達学習を用いた限られたデータによる材料特性のニューラルネットワーク予測の改善
- Authors: Schuyler Krawczuk and Daniele Venturi
- Abstract要約: 我々は,abinitioシミュレーションから物質特性の予測を高速化する新しい伝達学習アルゴリズムを開発した。
伝達学習は、物質科学以外の応用におけるデータ効率のモデリングに成功している。
- 参考スコア(独自算出の注目度): 3.2851683371946754
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop new transfer learning algorithms to accelerate prediction of
material properties from ab initio simulations based on density functional
theory (DFT). Transfer learning has been successfully utilized for
data-efficient modeling in applications other than materials science, and it
allows transferable representations learned from large datasets to be
repurposed for learning new tasks even with small datasets. In the context of
materials science, this opens the possibility to develop generalizable neural
network models that can be repurposed on other materials, without the need of
generating a large (computationally expensive) training set of materials
properties. The proposed transfer learning algorithms are demonstrated on
predicting the Gibbs free energy of light transition metal oxides.
- Abstract(参考訳): 密度汎関数理論(dft)に基づくab initioシミュレーションから材料特性の予測を高速化する新しい伝達学習アルゴリズムを開発した。
転送学習は、材料科学以外のアプリケーションでデータ効率のよいモデリングに成功しており、大きなデータセットから学んだ転送可能な表現を、小さなデータセットでも新しいタスクを学習するために再利用することができる。
材料科学の文脈では、材料特性の大規模な(計算コストの高い)トレーニングセットを生成する必要なしに、他の材料で再利用可能な一般化可能なニューラルネットワークモデルを開発する可能性を開く。
提案した遷移学習アルゴリズムは光遷移金属酸化物のギブス自由エネルギーを予測する。
関連論文リスト
- Scaling Law of Sim2Real Transfer Learning in Expanding Computational Materials Databases for Real-World Predictions [13.20562263181952]
計算データベース上で事前訓練された予測器を実システムに微調整すると、優れた一般化能力を持つモデルが得られる。
本研究では,物質科学における複数の機械学習タスクに対するシミュレーション・トゥ・リアル(Sim2Real)変換学習のスケーリング則を実証する。
論文 参考訳(メタデータ) (2024-08-07T18:47:58Z) - Advancing Extrapolative Predictions of Material Properties through Learning to Learn [1.3274508420845539]
我々は、ニューラルネットワークの注意に基づくアーキテクチャとメタ学習アルゴリズムを用いて、外挿的一般化能力を取得する。
このような外挿訓練されたモデルの可能性、特に目に見えない物質ドメインに迅速に適応する能力を強調します。
論文 参考訳(メタデータ) (2024-03-25T09:30:19Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWGは拡散に基づくニューラルネットワーク重み生成技術であり、転送学習のために高性能な重みを効率よく生成する。
本稿では,ニューラルネットワーク重み生成のための遅延拡散パラダイムを再放送するために,生成的ハイパー表現学習を拡張した。
我々のアプローチは大規模言語モデル(LLM)のような大規模アーキテクチャにスケーラブルであり、現在のパラメータ生成技術の限界を克服しています。
論文 参考訳(メタデータ) (2024-02-28T08:34:23Z) - Mobile Traffic Prediction at the Edge through Distributed and Transfer
Learning [2.687861184973893]
このトピックの研究は、異なるネットワーク要素からデータを収集することによって、中央集権的な予測を行うことに集中している。
本研究では,エッジ上で得られたデータセットを大規模計測キャンペーンで活用するエッジコンピューティングに基づく新しい予測フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-22T23:48:13Z) - Joint Feature and Differentiable $ k $-NN Graph Learning using Dirichlet
Energy [103.74640329539389]
特徴選択と識別可能な$k $-NNグラフ学習を同時に行うディープFS法を提案する。
我々は、ニューラルネットワークで$ k $-NNグラフを学習する際の非微分可能性問題に対処するために、最適輸送理論を用いる。
本モデルの有効性を,合成データセットと実世界のデータセットの両方で広範な実験により検証する。
論文 参考訳(メタデータ) (2023-05-21T08:15:55Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
マルチ物理問題における機械学習ツールの効果的な利用の鍵は、それらを物理モデルとコンピュータモデルに結合することである。
本章では, 燃焼システムにおけるデータ駆動型低次モデリングの適用可能性について概説する。
論文 参考訳(メタデータ) (2022-09-05T16:48:34Z) - Transfer Learning with Deep Tabular Models [66.67017691983182]
上流データにより、グラフニューラルネットワークはGBDTモデルよりも決定的な優位性を示す。
そこで本研究では,表在化学習のための現実的な診断ベンチマークを提案する。
上流と下流の特徴セットが異なる場合の擬似特徴法を提案する。
論文 参考訳(メタデータ) (2022-06-30T14:24:32Z) - A transfer learning enhanced the physics-informed neural network model
for vortex-induced vibration [0.0]
本稿では、VIV(2D)を研究するために、物理インフォームドニューラルネットワーク(PINN)モデルを用いたトランスファーラーニングを提案する。
物理インフォームドニューラルネットワークは、転送学習法と併用することにより、学習効率を高め、大量のデータセットを必要とせずに、ソースモデルからの共通特性知識による目標タスクの予測可能性を維持する。
論文 参考訳(メタデータ) (2021-12-29T08:20:23Z) - Audacity of huge: overcoming challenges of data scarcity and data
quality for machine learning in computational materials discovery [1.0036312061637764]
機械学習(ML)に加速された発見は、予測構造とプロパティの関係を明らかにするために大量の高忠実度データを必要とする。
材料発見に関心を持つ多くの特性において、データ生成の挑戦的な性質と高いコストは、人口が少なく、疑わしい品質を持つデータランドスケープを生み出している。
手作業によるキュレーションがなければ、より洗練された自然言語処理と自動画像解析により、文献から構造-プロパティ関係を学習できるようになる。
論文 参考訳(メタデータ) (2021-11-02T21:43:58Z) - TRAIL: Near-Optimal Imitation Learning with Suboptimal Data [100.83688818427915]
オフラインデータセットを使用してファクタードトランジションモデルを学習するトレーニング目標を提案する。
我々の理論的分析は、学習された潜在行動空間が下流模倣学習のサンプル効率を高めることを示唆している。
実際に潜伏行動空間を学習するために、エネルギーベースの遷移モデルを学ぶアルゴリズムTRAIL(Transition-Reparametrized Actions for Imitation Learning)を提案する。
論文 参考訳(メタデータ) (2021-10-27T21:05:00Z) - Multilinear Compressive Learning with Prior Knowledge [106.12874293597754]
マルチリニア圧縮学習(MCL)フレームワークは、マルチリニア圧縮センシングと機械学習をエンドツーエンドシステムに統合する。
MCLの背後にある主要なアイデアは、下流学習タスクの信号から重要な特徴を捉えることのできるテンソル部分空間の存在を仮定することである。
本稿では、上記の要件、すなわち、関心の信号が分離可能なテンソル部分空間をどうやって見つけるかという、2つの要件に対処する新しい解決策を提案する。
論文 参考訳(メタデータ) (2020-02-17T19:06:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。