論文の概要: A transfer learning enhanced the physics-informed neural network model
for vortex-induced vibration
- arxiv url: http://arxiv.org/abs/2112.14448v1
- Date: Wed, 29 Dec 2021 08:20:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-30 16:23:21.638554
- Title: A transfer learning enhanced the physics-informed neural network model
for vortex-induced vibration
- Title(参考訳): 伝達学習による渦誘発振動の物理インフォームドニューラルネットワークモデル
- Authors: Hesheng Tang, Hu Yang, Yangyang Liao, Liyu Xie
- Abstract要約: 本稿では、VIV(2D)を研究するために、物理インフォームドニューラルネットワーク(PINN)モデルを用いたトランスファーラーニングを提案する。
物理インフォームドニューラルネットワークは、転送学習法と併用することにより、学習効率を高め、大量のデータセットを必要とせずに、ソースモデルからの共通特性知識による目標タスクの予測可能性を維持する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vortex-induced vibration (VIV) is a typical nonlinear fluid-structure
interaction phenomenon, which widely exists in practical engineering (the
flexible riser, the bridge and the aircraft wing, etc). The conventional finite
element model (FEM)-based and data-driven approaches for VIV analysis often
suffer from the challenges of the computational cost and acquisition of
datasets. This paper proposed a transfer learning enhanced the physics-informed
neural network (PINN) model to study the VIV (2D). The physics-informed neural
network, when used in conjunction with the transfer learning method, enhances
learning efficiency and keeps predictability in the target task by common
characteristics knowledge from the source model without requiring a huge
quantity of datasets. The datasets obtained from VIV experiment are divided
evenly two parts (source domain and target domain), to evaluate the performance
of the model. The results show that the proposed method match closely with the
results available in the literature using conventional PINN algorithms even
though the quantity of datasets acquired in training model gradually becomes
smaller. The application of the model can break the limitation of monitoring
equipment and methods in the practical projects, and promote the in-depth study
of VIV.
- Abstract(参考訳): 渦誘起振動(VIV)は典型的な非線形流体構造相互作用現象であり、実用工学(フレキシブルライザー、ブリッジ、航空機翼など)に広く存在している。
従来の有限要素モデル(FEM)に基づく、VIV分析のためのデータ駆動型アプローチは、しばしば計算コストとデータセットの取得の課題に悩まされる。
本稿では、VIV(2D)を研究するために、物理情報ニューラルネットワーク(PINN)モデルを用いた転送学習を提案する。
物理インフォームドニューラルネットワークは、転送学習法と併用することにより、学習効率を高め、大量のデータセットを必要とせずに、ソースモデルからの共通特性知識による目標タスクの予測可能性を維持する。
viv実験から得られたデータセットを2つの部分(ソースドメインとターゲットドメイン)を均等に分割し、モデルの性能を評価する。
提案手法は,学習モデルで得られたデータセットの量が徐々に小さくなりつつも,従来のPINNアルゴリズムを用いて文献で得られる結果と密接に一致している。
このモデルの応用は、実用プロジェクトにおける監視装置と方法の限界を破り、VIVの詳細な研究を促進することができる。
関連論文リスト
- A Comparative Study of Machine Learning Models Predicting Energetics of Interacting Defects [5.574191640970887]
本稿では,相互作用する欠陥のあるシステムの自由エネルギー変化を予測する3つの方法の比較研究を行う。
その結果,この限られたデータセットであっても,クラスタ展開モデルによって正確なエネルギー予測が達成できることが示唆された。
本研究では,不完全な表面システムに機械学習を適用した予備評価を行う。
論文 参考訳(メタデータ) (2024-03-20T02:15:48Z) - Diffusion-based Neural Network Weights Generation [85.6725307453325]
データセット条件付き事前学習重み抽出による効率よく適応的な伝達学習手法を提案する。
具体的には、ニューラルネットワークの重みを再構築できる変分オートエンコーダを備えた潜時拡散モデルを用いる。
論文 参考訳(メタデータ) (2024-02-28T08:34:23Z) - Physics-Informed Machine Learning for Seismic Response Prediction OF Nonlinear Steel Moment Resisting Frame Structures [6.483318568088176]
PiML法は、非線形構造の地震応答をモデル化するために、科学的原理と物理法則をディープニューラルネットワークに統合する。
運動方程式を操作することは、システムの非線形性を学習し、物理的に解釈可能な結果の中で解を閉じ込めるのに役立つ。
結果、既存の物理誘導LSTMモデルよりも複雑なデータを処理し、他の非物理データ駆動ネットワークより優れている。
論文 参考訳(メタデータ) (2024-02-28T02:16:03Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Iterative self-transfer learning: A general methodology for response
time-history prediction based on small dataset [0.0]
本研究では,小さなデータセットに基づいてニューラルネットワークを学習するための反復的自己伝達学習手法を提案する。
提案手法は,小さなデータセットに対して,ほぼ一桁の精度でモデル性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-14T18:48:04Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - A Physics-Guided Neural Operator Learning Approach to Model Biological
Tissues from Digital Image Correlation Measurements [3.65211252467094]
本稿では, 生体組織モデリングにおけるデータ駆動型相関について述べる。これは, 未知の負荷シナリオ下でのデジタル画像相関(DIC)測定に基づいて変位場を予測することを目的としている。
ブタ三尖弁リーフレット上の多軸延伸プロトコルのDIC変位追跡測定から材料データベースを構築した。
材料応答は、負荷から結果の変位場への解演算子としてモデル化され、材料特性はデータから暗黙的に学習され、自然にネットワークパラメータに埋め込まれる。
論文 参考訳(メタデータ) (2022-04-01T04:56:41Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。