Leveraging Reinforcement Learning in Red Teaming for Advanced Ransomware Attack Simulations
- URL: http://arxiv.org/abs/2406.17576v1
- Date: Tue, 25 Jun 2024 14:16:40 GMT
- Title: Leveraging Reinforcement Learning in Red Teaming for Advanced Ransomware Attack Simulations
- Authors: Cheng Wang, Christopher Redino, Ryan Clark, Abdul Rahman, Sal Aguinaga, Sathvik Murli, Dhruv Nandakumar, Roland Rao, Lanxiao Huang, Daniel Radke, Edward Bowen,
- Abstract summary: This paper proposes a novel approach utilizing reinforcement learning (RL) to simulate ransomware attacks.
By training an RL agent in a simulated environment mirroring real-world networks, effective attack strategies can be learned quickly.
Experimental results on a 152-host example network confirm the effectiveness of the proposed approach.
- Score: 7.361316528368866
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Ransomware presents a significant and increasing threat to individuals and organizations by encrypting their systems and not releasing them until a large fee has been extracted. To bolster preparedness against potential attacks, organizations commonly conduct red teaming exercises, which involve simulated attacks to assess existing security measures. This paper proposes a novel approach utilizing reinforcement learning (RL) to simulate ransomware attacks. By training an RL agent in a simulated environment mirroring real-world networks, effective attack strategies can be learned quickly, significantly streamlining traditional, manual penetration testing processes. The attack pathways revealed by the RL agent can provide valuable insights to the defense team, helping them identify network weak points and develop more resilient defensive measures. Experimental results on a 152-host example network confirm the effectiveness of the proposed approach, demonstrating the RL agent's capability to discover and orchestrate attacks on high-value targets while evading honeyfiles (decoy files strategically placed to detect unauthorized access).
Related papers
- SleeperNets: Universal Backdoor Poisoning Attacks Against Reinforcement Learning Agents [16.350898218047405]
Reinforcement learning (RL) is an actively growing field that is seeing increased usage in real-world, safety-critical applications.
In this work we explore a particularly stealthy form of training-time attacks against RL -- backdoor poisoning.
We formulate a novel poisoning attack framework which interlinks the adversary's objectives with those of finding an optimal policy.
arXiv Detail & Related papers (2024-05-30T23:31:25Z) - Learning diverse attacks on large language models for robust red-teaming and safety tuning [126.32539952157083]
Red-teaming, or identifying prompts that elicit harmful responses, is a critical step in ensuring the safe deployment of large language models.
We show that even with explicit regularization to favor novelty and diversity, existing approaches suffer from mode collapse or fail to generate effective attacks.
We propose to use GFlowNet fine-tuning, followed by a secondary smoothing phase, to train the attacker model to generate diverse and effective attack prompts.
arXiv Detail & Related papers (2024-05-28T19:16:17Z) - SEEP: Training Dynamics Grounds Latent Representation Search for Mitigating Backdoor Poisoning Attacks [53.28390057407576]
Modern NLP models are often trained on public datasets drawn from diverse sources.
Data poisoning attacks can manipulate the model's behavior in ways engineered by the attacker.
Several strategies have been proposed to mitigate the risks associated with backdoor attacks.
arXiv Detail & Related papers (2024-05-19T14:50:09Z) - A Comparative Study of Watering Hole Attack Detection Using Supervised Neural Network [0.0]
This study explores the nefarious tactic known as "watering hole attacks using supervised neural networks to detect and prevent these attacks.
The neural network identifies patterns in website behavior and network traffic associated with such attacks.
In terms of prevention, the model successfully stops 95% of attacks, providing robust user protection.
arXiv Detail & Related papers (2023-11-25T13:30:03Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
This paper reveals the threats in this practical scenario that backdoor attacks can remain effective even after defenses.
We introduce the emphtoolns attack, which is resistant to backdoor detection and model fine-tuning defenses.
arXiv Detail & Related papers (2023-11-20T02:21:49Z) - Unveiling Vulnerabilities in Interpretable Deep Learning Systems with
Query-Efficient Black-box Attacks [16.13790238416691]
Interpretable Deep Learning Systems (IDLSes) are designed to make the system more transparent and explainable.
We propose a novel microbial genetic algorithm-based black-box attack against IDLSes that requires no prior knowledge of the target model and its interpretation model.
arXiv Detail & Related papers (2023-07-21T21:09:54Z) - Guidance Through Surrogate: Towards a Generic Diagnostic Attack [101.36906370355435]
We develop a guided mechanism to avoid local minima during attack optimization, leading to a novel attack dubbed Guided Projected Gradient Attack (G-PGA)
Our modified attack does not require random restarts, large number of attack iterations or search for an optimal step-size.
More than an effective attack, G-PGA can be used as a diagnostic tool to reveal elusive robustness due to gradient masking in adversarial defenses.
arXiv Detail & Related papers (2022-12-30T18:45:23Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
We introduce epsilon-illusory, a novel form of adversarial attack on sequential decision-makers.
Compared to existing attacks, we empirically find epsilon-illusory to be significantly harder to detect with automated methods.
Our findings suggest the need for better anomaly detectors, as well as effective hardware- and system-level defenses.
arXiv Detail & Related papers (2022-07-20T19:49:09Z) - An Overview of Backdoor Attacks Against Deep Neural Networks and
Possible Defences [33.415612094924654]
The goal of this paper is to review the different types of attacks and defences proposed so far.
In a backdoor attack, the attacker corrupts the training data so to induce an erroneous behaviour at test time.
Test time errors are activated only in the presence of a triggering event corresponding to a properly crafted input sample.
arXiv Detail & Related papers (2021-11-16T13:06:31Z) - Robust Deep Reinforcement Learning through Adversarial Loss [74.20501663956604]
Recent studies have shown that deep reinforcement learning agents are vulnerable to small adversarial perturbations on the agent's inputs.
We propose RADIAL-RL, a principled framework to train reinforcement learning agents with improved robustness against adversarial attacks.
arXiv Detail & Related papers (2020-08-05T07:49:42Z) - Adversarial Deep Ensemble: Evasion Attacks and Defenses for Malware
Detection [8.551227913472632]
We propose a new attack approach, named mixture of attacks, to perturb a malware example without ruining its malicious functionality.
This naturally leads to a new instantiation of adversarial training, which is further geared to enhancing the ensemble of deep neural networks.
We evaluate defenses using Android malware detectors against 26 different attacks upon two practical datasets.
arXiv Detail & Related papers (2020-06-30T05:56:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.