論文の概要: Counterfactual explanation of machine learning survival models
- arxiv url: http://arxiv.org/abs/2006.16793v1
- Date: Fri, 26 Jun 2020 19:46:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-16 21:22:26.063771
- Title: Counterfactual explanation of machine learning survival models
- Title(参考訳): 機械学習サバイバルモデルの反事実的説明
- Authors: Maxim S. Kovalev and Lev V. Utkin
- Abstract要約: その結果, 線形制約を伴う標準凸最適化問題に, 逆実説明問題を還元できることが示唆された。
他のブラックボックスモデルでは、よく知られたParticle Swarm Optimizationアルゴリズムを適用することが提案されている。
- 参考スコア(独自算出の注目度): 5.482532589225552
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A method for counterfactual explanation of machine learning survival models
is proposed. One of the difficulties of solving the counterfactual explanation
problem is that the classes of examples are implicitly defined through outcomes
of a machine learning survival model in the form of survival functions. A
condition that establishes the difference between survival functions of the
original example and the counterfactual is introduced. This condition is based
on using a distance between mean times to event. It is shown that the
counterfactual explanation problem can be reduced to a standard convex
optimization problem with linear constraints when the explained black-box model
is the Cox model. For other black-box models, it is proposed to apply the
well-known Particle Swarm Optimization algorithm. A lot of numerical
experiments with real and synthetic data demonstrate the proposed method.
- Abstract(参考訳): 機械学習サバイバルモデルの非現実的説明法を提案する。
対物的説明問題の解決の難しさの1つは、例のクラスが生存関数の形で機械学習サバイバルモデルの結果を通じて暗黙的に定義されることである。
元の例の生存関数と反現実性の違いを確定する条件を導入する。
この条件は、平均時刻からイベントまでの距離を用いている。
ブラックボックスモデルがコックスモデルである場合, 逆実説明問題を線形制約付き標準凸最適化問題に還元できることが示されている。
他のブラックボックスモデルでは、よく知られたParticle Swarm Optimizationアルゴリズムを適用することが提案されている。
実データおよび合成データを用いた数値実験の多くが提案手法を実証している。
関連論文リスト
- Learning Model Agnostic Explanations via Constraint Programming [8.257194221102225]
解釈可能な機械学習は、不透明な分類器による予測を人間に理解可能な言葉で説明するという、繰り返し発生する課題に直面している。
本稿では,このタスクを制約最適化問題(Constraint Optimization Problem)として,入力データインスタンスの最小誤差と境界サイズの説明と,ブラックボックスが生成したサンプルの集合を求める。
提案手法は,様々なデータセット上で実証的に評価し,最先端のアンカー法よりも統計的に優れていることを示す。
論文 参考訳(メタデータ) (2024-11-13T09:55:59Z) - Learning with Explanation Constraints [91.23736536228485]
我々は、説明がモデルの学習をどのように改善するかを分析するための学習理論フレームワークを提供する。
我々は,多数の合成および実世界の実験に対して,我々のアプローチの利点を実証する。
論文 参考訳(メタデータ) (2023-03-25T15:06:47Z) - SurvSHAP(t): Time-dependent explanations of machine learning survival
models [6.950862982117125]
SurvSHAP(t)は、生存可能なブラックボックスモデルの解釈を可能にする最初の時間依存的な説明である。
合成および医療データの実験により、SurvSHAP(t)が時間依存効果で変数を検出できることが確認された。
我々はPythonで時間に依存した説明のアクセス可能な実装を提供する。
論文 参考訳(メタデータ) (2022-08-23T17:01:14Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - Learning to Scaffold: Optimizing Model Explanations for Teaching [74.25464914078826]
我々は3つの自然言語処理とコンピュータビジョンタスクのモデルを訓練する。
筆者らは,本フレームワークで抽出した説明文を学習した学生が,従来の手法よりもはるかに効果的に教師をシミュレートできることを発見した。
論文 参考訳(メタデータ) (2022-04-22T16:43:39Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
コンピュータビジョンの応用において、生成的対実法はモデルの入力を摂動させて予測を変更する方法を示す。
本稿では,多様性強化損失を用いて制約される不連続潜在空間における摂動を学習する反事実法を提案する。
このモデルは, 従来の最先端手法と比較して, 高品質な説明を生産する成功率を向上させる。
論文 参考訳(メタデータ) (2021-03-18T12:57:34Z) - Dependency Decomposition and a Reject Option for Explainable Models [4.94950858749529]
近年のディープラーニングモデルは様々な推論タスクにおいて非常によく機能する。
最近の進歩は特徴を視覚化し、入力の属性を記述する方法を提供します。
本稿では, 目的の画像分類出力に対する確率分布に関する依存性を初めて解析する。
論文 参考訳(メタデータ) (2020-12-11T17:39:33Z) - Deducing neighborhoods of classes from a fitted model [68.8204255655161]
本稿では,新しいタイプの解釈可能な機械学習手法を提案する。
量子シフトを用いた分類モデルでは、特徴空間の予測クラスへの分割を理解するのに役立ちます。
基本的に、実際のデータポイント(または特定の関心点)を使用し、特定の特徴をわずかに引き上げたり減少させたりした後の予測の変化を観察する。
論文 参考訳(メタデータ) (2020-09-11T16:35:53Z) - The data-driven physical-based equations discovery using evolutionary
approach [77.34726150561087]
与えられた観測データから数学的方程式を発見するアルゴリズムについて述べる。
このアルゴリズムは遺伝的プログラミングとスパース回帰を組み合わせたものである。
解析方程式の発見や偏微分方程式(PDE)の発見にも用いられる。
論文 参考訳(メタデータ) (2020-04-03T17:21:57Z) - SurvLIME: A method for explaining machine learning survival models [4.640835690336653]
提案手法の背景にある主な考え方は,Cox比例ハザードモデルを用いて,試験例の周辺地域における生存率モデルを近似することである。
多くの数値実験がSurvLIMEの効率を実証している。
論文 参考訳(メタデータ) (2020-03-18T17:48:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。