Directional Primitives for Uncertainty-Aware Motion Estimation in Urban
Environments
- URL: http://arxiv.org/abs/2007.00161v1
- Date: Wed, 1 Jul 2020 00:22:31 GMT
- Title: Directional Primitives for Uncertainty-Aware Motion Estimation in Urban
Environments
- Authors: Ransalu Senanayake, Maneekwan Toyungyernsub, Mingyu Wang, Mykel J.
Kochenderfer, and Mac Schwager
- Abstract summary: We introduce the concept of directional primitives, which is a representation of prior information of road networks.
Experiments conducted on highways, intersections, and roundabouts in the Carla simulator, as well as real-world urban driving datasets, indicate that primitives lead to better uncertainty-aware motion estimation.
- Score: 46.080970595942645
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We can use driving data collected over a long period of time to extract rich
information about how vehicles behave in different areas of the roads. In this
paper, we introduce the concept of directional primitives, which is a
representation of prior information of road networks. Specifically, we
represent the uncertainty of directions using a mixture of von Mises
distributions and associated speeds using gamma distributions. These
location-dependent primitives can be combined with motion information of
surrounding vehicles to predict their future behavior in the form of
probability distributions. Experiments conducted on highways, intersections,
and roundabouts in the Carla simulator, as well as real-world urban driving
datasets, indicate that primitives lead to better uncertainty-aware motion
estimation.
Related papers
- Multimodal Trajectory Prediction for Autonomous Driving on Unstructured Roads using Deep Convolutional Network [15.950227451262919]
The application of autonomous driving in open-pit mining has garnered increasing attention for achieving safe and efficient transportation.
A method is proposed to predict multiple possible trajectories and their probabilities of the target vehicle.
The method underwent offline testing on a dataset specifically designed for autonomous driving scenarios in open-pit mining.
arXiv Detail & Related papers (2024-09-27T02:29:02Z) - Multi-Vehicle Trajectory Prediction at Intersections using State and
Intention Information [50.40632021583213]
Traditional approaches to prediction of future trajectory of road agents rely on knowing information about their past trajectory.
This work instead relies on having knowledge of the current state and intended direction to make predictions for multiple vehicles at intersections.
Message passing of this information between the vehicles provides each one of them a more holistic overview of the environment.
arXiv Detail & Related papers (2023-01-06T15:13:23Z) - Exploring Attention GAN for Vehicle Motion Prediction [2.887073662645855]
We study the influence of attention in generative models for motion prediction, considering both physical and social context.
We validate our method using the Argoverse Motion Forecasting Benchmark 1.1, achieving competitive unimodal results.
arXiv Detail & Related papers (2022-09-26T13:18:32Z) - Predicting Future Occupancy Grids in Dynamic Environment with
Spatio-Temporal Learning [63.25627328308978]
We propose a-temporal prediction network pipeline to generate future occupancy predictions.
Compared to current SOTA, our approach predicts occupancy for a longer horizon of 3 seconds.
We publicly release our grid occupancy dataset based on nulis to support further research.
arXiv Detail & Related papers (2022-05-06T13:45:32Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
We organize an experimental campaign with video measurement in an area within the urban network of Zurich, Switzerland.
We focus on capturing the traffic state in terms of traffic flow and travel times by ensuring measurements from established thermal cameras.
We propose a simple yet efficient Multiple Linear Regression (MLR) model to estimate travel times with fusion of various data sources.
arXiv Detail & Related papers (2021-08-02T08:13:57Z) - Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers [126.81938540470847]
We propose Euro-PVI, a dataset of pedestrian and bicyclist trajectories.
In this work, we develop a joint inference model that learns an expressive multi-modal shared latent space across agents in the urban scene.
We achieve state of the art results on the nuScenes and Euro-PVI datasets demonstrating the importance of capturing interactions between ego-vehicle and pedestrians (bicyclists) for accurate predictions.
arXiv Detail & Related papers (2021-06-22T15:40:21Z) - Maneuver-based Anchor Trajectory Hypotheses at Roundabouts [3.5851903214591663]
We address the problem of vehicle motion prediction in a challenging roundabout environment by learning from human data.
Drivers' intentions are encoded by a set of maneuvers that correspond to semantic driving concepts.
Our model employs a set of maneuver-specific anchor trajectories that cover the space of possible outcomes at the roundabout.
arXiv Detail & Related papers (2021-04-22T17:08:29Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z) - Probabilistic Multi-modal Trajectory Prediction with Lane Attention for
Autonomous Vehicles [10.485790589381704]
Trajectory prediction is crucial for autonomous vehicles.
We propose a novel instance-aware representation for lane representation.
We show that the proposed lane representation together with the lane attention module can be integrated into the widely used encoder-decoder framework.
arXiv Detail & Related papers (2020-07-06T07:57:23Z) - MCENET: Multi-Context Encoder Network for Homogeneous Agent Trajectory
Prediction in Mixed Traffic [35.22312783822563]
Trajectory prediction in urban mixedtraffic zones is critical for many intelligent transportation systems.
We propose an approach named Multi-Context Network (MCENET) that is trained by encoding both past and future scene context.
In inference time, we combine the past context and motion information of the target agent with samplings of the latent variables to predict multiple realistic trajectories.
arXiv Detail & Related papers (2020-02-14T11:04:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.