論文の概要: Determining Sequence of Image Processing Technique (IPT) to Detect
Adversarial Attacks
- arxiv url: http://arxiv.org/abs/2007.00337v2
- Date: Tue, 7 Jul 2020 09:26:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-14 21:50:12.722383
- Title: Determining Sequence of Image Processing Technique (IPT) to Detect
Adversarial Attacks
- Title(参考訳): 敵攻撃検出のための画像処理技術(IPT)のシーケンス決定
- Authors: Kishor Datta Gupta, Zahid Akhtar, Dipankar Dasgupta
- Abstract要約: 本稿では,悪意のある入力を検出するための画像処理手法(IPTS)を自動決定する進化的手法を提案する。
遺伝的アルゴリズム(GA)に基づく検出フレームワークを開発し、最適なIPTSを見つける。
テスト時に動的に選択されるIPTSのセットは、敵攻撃のフィルタとして機能する。
- 参考スコア(独自算出の注目度): 4.431353523758957
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Developing secure machine learning models from adversarial examples is
challenging as various methods are continually being developed to generate
adversarial attacks. In this work, we propose an evolutionary approach to
automatically determine Image Processing Techniques Sequence (IPTS) for
detecting malicious inputs. Accordingly, we first used a diverse set of attack
methods including adaptive attack methods (on our defense) to generate
adversarial samples from the clean dataset. A detection framework based on a
genetic algorithm (GA) is developed to find the optimal IPTS, where the
optimality is estimated by different fitness measures such as Euclidean
distance, entropy loss, average histogram, local binary pattern and loss
functions. The "image difference" between the original and processed images is
used to extract the features, which are then fed to a classification scheme in
order to determine whether the input sample is adversarial or clean. This paper
described our methodology and performed experiments using multiple data-sets
tested with several adversarial attacks. For each attack-type and dataset, it
generates unique IPTS. A set of IPTS selected dynamically in testing time which
works as a filter for the adversarial attack. Our empirical experiments
exhibited promising results indicating the approach can efficiently be used as
processing for any AI model.
- Abstract(参考訳): 敵の攻撃を生成するための様々な手法が継続的に開発されているため、敵の例からセキュアな機械学習モデルを開発することは困難である。
本研究では,悪意のある入力を検出するために,画像処理技術シーケンス(IPTS)を自動的に決定する進化的手法を提案する。
そこで,我々はまず,アダプティブアタック法(防御上)を含む多様なアタック手法を用いて,クリーンデータセットから敵のサンプルを生成する。
遺伝的アルゴリズム (ga) に基づく検出フレームワークを開発し, ユークリッド距離, エントロピー損失, 平均ヒストグラム, 局所二分パターン, 損失関数などの異なる適合度測定により最適度を推定する最適iptを求める。
元の画像と処理された画像の間の「画像の差」は特徴を抽出するために使われ、入力されたサンプルが逆境かクリーンかを決定するために分類スキームに送られます。
本稿では,本手法を概説し,複数の逆攻撃を用いた複数データセットを用いた実験を行った。
各攻撃タイプとデータセットに対して、独自のIPTSを生成する。
テスト時に動的に選択されるIPTSのセットは、敵攻撃のフィルタとして機能する。
実験により,任意のAIモデルの処理に効果的に利用できることを示す有望な結果が得られた。
関連論文リスト
- AdvQDet: Detecting Query-Based Adversarial Attacks with Adversarial Contrastive Prompt Tuning [93.77763753231338]
CLIP画像エンコーダを微調整し、2つの中間対向クエリに対して同様の埋め込みを抽出するために、ACPT(Adversarial Contrastive Prompt Tuning)を提案する。
我々は,ACPTが7つの最先端クエリベースの攻撃を検出できることを示す。
また,ACPTは3種類のアダプティブアタックに対して堅牢であることを示す。
論文 参考訳(メタデータ) (2024-08-04T09:53:50Z) - GE-AdvGAN: Improving the transferability of adversarial samples by
gradient editing-based adversarial generative model [69.71629949747884]
GAN(Generative Adversarial Networks)のような逆生成モデルは、様々な種類のデータを生成するために広く応用されている。
本研究では, GE-AdvGAN という新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-11T16:43:16Z) - CLIPC8: Face liveness detection algorithm based on image-text pairs and
contrastive learning [3.90443799528247]
画像テキストペアとコントラスト学習に基づく顔の生存度検出手法を提案する。
提案手法は,特定のシナリオにおいて,特定の生きた攻撃行動を効果的に検出することができる。
また、印刷写真攻撃やスクリーンリメイク攻撃などの従来の生きた攻撃方法の検出にも有効である。
論文 参考訳(メタデータ) (2023-11-29T12:21:42Z) - Microbial Genetic Algorithm-based Black-box Attack against Interpretable
Deep Learning Systems [16.13790238416691]
ホワイトボックス環境では、解釈可能なディープラーニングシステム(IDLS)が悪意のある操作に対して脆弱であることが示されている。
本稿では,IDLSに対するクエリ効率の高いScoreベースのブラックボックス攻撃QuScoreを提案する。
論文 参考訳(メタデータ) (2023-07-13T00:08:52Z) - Wasserstein distributional robustness of neural networks [9.79503506460041]
ディープニューラルネットワークは敵攻撃(AA)に弱いことが知られている
画像認識タスクでは、元の小さな摂動によって画像が誤分類される可能性がある。
本稿では,Wassersteinの分散ロバスト最適化(DRO)技術を用いて問題を再検討し,新しいコントリビューションを得た。
論文 参考訳(メタデータ) (2023-06-16T13:41:24Z) - Class-Conditioned Transformation for Enhanced Robust Image Classification [19.738635819545554]
本稿では,Adrial-versa-Trained (AT)モデルを強化する新しいテスト時間脅威モデルを提案する。
コンディショナル・イメージ・トランスフォーメーションとディスタンス・ベース・予測(CODIP)を用いて動作する。
提案手法は,様々なモデル,ATメソッド,データセット,アタックタイプに関する広範な実験を通じて,最先端の成果を実証する。
論文 参考訳(メタデータ) (2023-03-27T17:28:20Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
我々は、アウト・オブ・ディストリビューション(OOD)インプットと敵攻撃(AA)を検出する新しい手法であるDAINを導入する。
本手法は,ニューラルネットワークの内部動作を監視し,活性化分布の密度推定器を学習する。
当社のモデルは,特別なアクセラレータを必要とせずに,効率的な計算とデプロイが可能な単一のGPUでトレーニングすることが可能です。
論文 参考訳(メタデータ) (2021-05-30T22:07:13Z) - Targeted Attack against Deep Neural Networks via Flipping Limited Weight
Bits [55.740716446995805]
我々は,悪質な目的で展開段階におけるモデルパラメータを修飾する新しい攻撃パラダイムについて検討する。
私たちのゴールは、特定のサンプルをサンプル修正なしでターゲットクラスに誤分類することです。
整数プログラミングにおける最新の手法を利用することで、このBIP問題を連続最適化問題として等価に再構成する。
論文 参考訳(メタデータ) (2021-02-21T03:13:27Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
本稿では,HMCAM (Acumulated Momentum) を用いたハミルトニアンモンテカルロ法を提案する。
また, 対数的対数的対数的学習(Contrastive Adversarial Training, CAT)と呼ばれる新たな生成法を提案し, 対数的例の平衡分布にアプローチする。
いくつかの自然画像データセットと実用システムに関する定量的および定性的な解析により、提案アルゴリズムの優位性が確認された。
論文 参考訳(メタデータ) (2020-10-15T16:07:26Z) - Anomaly Detection-Based Unknown Face Presentation Attack Detection [74.4918294453537]
異常検出に基づくスプーフ攻撃検出は、顔提示攻撃検出の最近の進歩である。
本稿では,異常検出に基づくスプーフ攻撃検出のためのディープラーニングソリューションを提案する。
提案手法はCNNの表現学習能力の恩恵を受け,fPADタスクの優れた特徴を学習する。
論文 参考訳(メタデータ) (2020-07-11T21:20:55Z) - Efficient detection of adversarial images [2.6249027950824506]
画像の画素値は外部攻撃者によって修正されるため、人間の目にはほとんど見えない。
本稿では,修正画像の検出を容易にする新しい前処理手法を提案する。
このアルゴリズムの適応バージョンでは、ランダムな数の摂動が適応的に選択される。
論文 参考訳(メタデータ) (2020-07-09T05:35:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。