論文の概要: A Novel Higher-order Weisfeiler-Lehman Graph Convolution
- arxiv url: http://arxiv.org/abs/2007.00346v2
- Date: Mon, 21 Sep 2020 11:33:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-14 22:09:04.218300
- Title: A Novel Higher-order Weisfeiler-Lehman Graph Convolution
- Title(参考訳): 新しい高次Weisfeiler-Lehmanグラフ畳み込み
- Authors: Clemens Damke, Vitalik Melnikov, Eyke H\"ullermeier
- Abstract要約: 2次元Weisfeiler-Lehmanテストに基づく新しいグラフ畳み込み演算子を提案する。
得られた2-WL-GNNアーキテクチャは,既存のGNNアプローチよりも識別性が高いことを示す。
- 参考スコア(独自算出の注目度): 2.658812114255374
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current GNN architectures use a vertex neighborhood aggregation scheme, which
limits their discriminative power to that of the 1-dimensional
Weisfeiler-Lehman (WL) graph isomorphism test. Here, we propose a novel graph
convolution operator that is based on the 2-dimensional WL test. We formally
show that the resulting 2-WL-GNN architecture is more discriminative than
existing GNN approaches. This theoretical result is complemented by
experimental studies using synthetic and real data. On multiple common graph
classification benchmarks, we demonstrate that the proposed model is
competitive with state-of-the-art graph kernels and GNNs.
- Abstract(参考訳): 現在のGNNアーキテクチャは頂点近傍アグリゲーションスキームを用いており、その識別力は1次元ワイスフェイラー・リーマングラフ同型テスト(WL)に制限される。
本稿では,2次元WLテストに基づく新しいグラフ畳み込み演算子を提案する。
得られた2-WL-GNNアーキテクチャが既存のGNNアプローチよりも識別可能であることを示す。
この理論結果は、合成データと実データを用いた実験によって補完される。
複数の共通グラフ分類ベンチマークにおいて,提案モデルが最先端のグラフカーネルやGNNと競合することを示す。
関連論文リスト
- Learning to Reweight for Graph Neural Network [63.978102332612906]
グラフニューラルネットワーク(GNN)は、グラフタスクに対して有望な結果を示す。
既存のGNNの一般化能力は、テストとトレーニンググラフデータの間に分散シフトが存在する場合に低下する。
本稿では,分布外一般化能力を大幅に向上させる非線形グラフデコリレーション法を提案する。
論文 参考訳(メタデータ) (2023-12-19T12:25:10Z) - Weisfeiler and Leman go Hyperbolic: Learning Distance Preserving Node
Representations [26.77596449192451]
グラフニューラルネットワーク(GNN)は、グラフ上の機械学習問題を解決するための有望なツールとして登場した。
本論文では,Weisfeiler-Leman(WL)アルゴリズムによって生成される階層に基づいて,ノード間の距離関数を定義する。
本稿では,ノード間の距離を保存する表現を学習するモデルを提案する。
論文 参考訳(メタデータ) (2022-11-04T15:03:41Z) - Weisfeiler-Lehman goes Dynamic: An Analysis of the Expressive Power of Graph Neural Networks for Attributed and Dynamic Graphs [1.3757956340051607]
グラフニューラルネットワーク(GNN)は、グラフ処理のための大規模なリレーショナルモデルである。
GNNの表現力に関する最近の研究は、グラフを識別する能力に焦点を当てている。
実生活のアプリケーションは、しばしばより広い種類のグラフを含む。
論文 参考訳(メタデータ) (2022-10-08T10:14:41Z) - Two-Dimensional Weisfeiler-Lehman Graph Neural Networks for Link
Prediction [61.01337335214126]
グラフニューラルネットワーク(GNN)のリンク予測
リンク予測のためのほとんどの既存のGNNは、1次元Weisfeiler-Lehman (1-WL) テストに基づいている。
テキスト2次元Weisfeiler-Lehman (2-WL) テストに基づいて,ノード対(リンク)表現を直接取得可能な,まったく異なるアプローチを提案する。
論文 参考訳(メタデータ) (2022-06-20T04:50:38Z) - Representation Power of Graph Neural Networks: Improved Expressivity via
Algebraic Analysis [124.97061497512804]
標準グラフニューラルネットワーク (GNN) はWeisfeiler-Lehman (WL) アルゴリズムよりも差別的な表現を生成する。
また、白い入力を持つ単純な畳み込みアーキテクチャは、グラフの閉経路をカウントする同変の特徴を生じさせることを示した。
論文 参考訳(メタデータ) (2022-05-19T18:40:25Z) - Twin Weisfeiler-Lehman: High Expressive GNNs for Graph Classification [48.087302573188396]
本稿では,ノードラベルとノードIDを同時に渡す新しいグラフ同型テスト手法Twin-WLを提案する。
2つのツイン-GNNは、従来のメッセージパッシングGNNよりも表現力が高いことが証明された。
論文 参考訳(メタデータ) (2022-03-22T12:58:03Z) - Graph Neural Networks with Parallel Neighborhood Aggregations for Graph
Classification [14.112444998191698]
グラフニューラルネットワーク(GNN)モデルを用いたグラフ分類に着目し、並列に配置された近傍グラフ演算子のバンクを用いてノード特徴をプリ計算する。
これらのGNNモデルには、事前計算によるトレーニングと推論時間の削減という自然な利点がある。
本研究は,様々な実世界のデータセット上で,開発モデルが最先端の性能を達成することを数値実験により実証する。
論文 参考訳(メタデータ) (2021-11-22T19:19:40Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
グラフニューラルネットワーク(GNN)はグラフ表現学習において大きな成功を収めている。
GNNは、実際には非常に異なるグラフ部分構造に対して同一の表現を生成する。
より強力なGNNは、最近高階試験を模倣して提案され、基礎となるグラフ構造を疎結合にできないため、非効率である。
本稿では,グラフ表現学習の新たなクラスとして距離分解(DE)を提案する。
論文 参考訳(メタデータ) (2020-08-31T23:15:40Z) - Improving Graph Neural Network Expressivity via Subgraph Isomorphism
Counting [63.04999833264299]
グラフサブストラクチャネットワーク(GSN)は,サブストラクチャエンコーディングに基づくトポロジ的に認識可能なメッセージパッシング方式である。
Wesfeiler-Leman (WL) グラフ同型テストよりも厳密に表現可能であることを示す。
グラフ分類と回帰タスクについて広範囲に評価を行い、様々な実世界の環境において最先端の結果を得る。
論文 参考訳(メタデータ) (2020-06-16T15:30:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。