Benchmarking for Metaheuristic Black-Box Optimization: Perspectives and
Open Challenges
- URL: http://arxiv.org/abs/2007.00541v1
- Date: Wed, 1 Jul 2020 15:09:40 GMT
- Title: Benchmarking for Metaheuristic Black-Box Optimization: Perspectives and
Open Challenges
- Authors: Ramses Sala and Ralf M\"uller
- Abstract summary: Research on new optimization algorithms is often funded based on the motivation that such algorithms might improve the capabilities to deal with real-world and industrially relevant challenges.
A large number of test problems and benchmark suites have been developed and used for comparative assessments of algorithms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Research on new optimization algorithms is often funded based on the
motivation that such algorithms might improve the capabilities to deal with
real-world and industrially relevant optimization challenges. Besides a huge
variety of different evolutionary and metaheuristic optimization algorithms,
also a large number of test problems and benchmark suites have been developed
and used for comparative assessments of algorithms, in the context of global,
continuous, and black-box optimization. For many of the commonly used synthetic
benchmark problems or artificial fitness landscapes, there are however, no
methods available, to relate the resulting algorithm performance assessments to
technologically relevant real-world optimization problems, or vice versa. Also,
from a theoretical perspective, many of the commonly used benchmark problems
and approaches have little to no generalization value. Based on a mini-review
of publications with critical comments, advice, and new approaches, this
communication aims to give a constructive perspective on several open
challenges and prospective research directions related to systematic and
generalizable benchmarking for black-box optimization.
Related papers
- A Tutorial on the Design, Experimentation and Application of Metaheuristic Algorithms to Real-World Optimization Problems [16.890440704820367]
In spite of decades of historical advancements on the design and use of metaheuristics, large difficulties still remain in regards to the understandability, algorithmic design uprightness, and performance verifiability of new technical achievements.
This work aims at providing the audience with a proposal of good practices which should be embraced when conducting studies about metaheuristics methods used for optimization.
arXiv Detail & Related papers (2024-10-04T07:41:23Z) - Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - Explainable Benchmarking for Iterative Optimization Heuristics [0.8192907805418583]
We introduce the IOH-Xplainer software framework, for analyzing and understanding the performance of various optimization algorithms.
We examine the impact of different algorithmic components and configurations, offering insights into their performance across diverse scenarios.
arXiv Detail & Related papers (2024-01-31T14:02:26Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
The Quantum Approximate Optimization Algorithm (QAOA) is a highly promising variational quantum algorithm that aims to solve intractable optimization problems.
This comprehensive review offers an overview of the current state of QAOA, encompassing its performance analysis in diverse scenarios.
We conduct a comparative study of selected QAOA extensions and variants, while exploring future prospects and directions for the algorithm.
arXiv Detail & Related papers (2023-06-15T15:28:12Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Socio-cognitive Optimization of Time-delay Control Problems using
Evolutionary Metaheuristics [89.24951036534168]
Metaheuristics are universal optimization algorithms which should be used for solving difficult problems, unsolvable by classic approaches.
In this paper we aim at constructing novel socio-cognitive metaheuristic based on castes, and apply several versions of this algorithm to optimization of time-delay system model.
arXiv Detail & Related papers (2022-10-23T22:21:10Z) - Neural Combinatorial Optimization: a New Player in the Field [69.23334811890919]
This paper presents a critical analysis on the incorporation of algorithms based on neural networks into the classical optimization framework.
A comprehensive study is carried out to analyse the fundamental aspects of such algorithms, including performance, transferability, computational cost and to larger-sized instances.
arXiv Detail & Related papers (2022-05-03T07:54:56Z) - On the Optimality of Batch Policy Optimization Algorithms [106.89498352537682]
Batch policy optimization considers leveraging existing data for policy construction before interacting with an environment.
We show that any confidence-adjusted index algorithm is minimax optimal, whether it be optimistic, pessimistic or neutral.
We introduce a new weighted-minimax criterion that considers the inherent difficulty of optimal value prediction.
arXiv Detail & Related papers (2021-04-06T05:23:20Z) - PAMELI: A Meta-Algorithm for Computationally Expensive Multi-Objective
Optimization Problems [0.0]
The proposed algorithm is based on solving a set of surrogate problems defined by models of the real one.
Our algorithm also performs a meta-search for optimal surrogate models and navigation strategies for the optimization landscape.
arXiv Detail & Related papers (2021-03-19T11:18:03Z) - Optimistic variants of single-objective bilevel optimization for
evolutionary algorithms [6.788217433800101]
A partial partial evolutionary approach has been proposed to solve the benchmark problems and have outstanding results.
A new variant has also been proposed to the commonly used convergence approaches, i.e. optimistic and pessimistic.
The experimental results demonstrate the algorithm converges differently to optimum solutions with the optimistic variants.
arXiv Detail & Related papers (2020-08-22T23:12:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.