Compounds of symmetric informationally complete measurements and their
application in quantum key distribution
- URL: http://arxiv.org/abs/2007.01007v1
- Date: Thu, 2 Jul 2020 10:43:21 GMT
- Title: Compounds of symmetric informationally complete measurements and their
application in quantum key distribution
- Authors: Armin Tavakoli, Ingemar Bengtsson, Nicolas Gisin and Joseph M. Renes
- Abstract summary: We introduce a more sophisticated discrete structure compounded by several SICs.
A SIC-compound is defined to be a collection of $d3$ vectors in $d$-dimensional Hilbert space.
We show that SIC-compounds enable secure key generation in the presence of errors that are large enough to prevent the success of the generalisation of the six-state protocol.
- Score: 6.117371161379207
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Symmetric informationally complete measurements (SICs) are elegant,
celebrated and broadly useful discrete structures in Hilbert space. We
introduce a more sophisticated discrete structure compounded by several SICs. A
SIC-compound is defined to be a collection of $d^3$ vectors in $d$-dimensional
Hilbert space that can be partitioned in two different ways: into $d$ SICs and
into $d^2$ orthonormal bases. While a priori their existence may appear
unlikely when $d>2$, we surprisingly answer it in the positive through an
explicit construction for $d=4$. Remarkably this SIC-compound admits a close
relation to mutually unbiased bases, as is revealed through quantum state
discrimination. Going beyond fundamental considerations, we leverage these
exotic properties to construct a protocol for quantum key distribution and
analyze its security under general eavesdropping attacks. We show that
SIC-compounds enable secure key generation in the presence of errors that are
large enough to prevent the success of the generalisation of the six-state
protocol.
Related papers
- Classical certification of quantum gates under the dimension assumption [0.1874930567916036]
We develop an efficient method for certifying single-qubit quantum gates in a black-box scenario.
We prove that the method's sample complexity grows as $mathrmO(varepsilon-1)$.
We show that the proposed method can be used to certify a gate set universal for single-qubit quantum computation.
arXiv Detail & Related papers (2024-01-30T13:40:39Z) - Nystr\"om $M$-Hilbert-Schmidt Independence Criterion [0.0]
Key features that make kernels ubiquitous are (i) the number of domains they have been designed for, (ii) the Hilbert structure of the function class associated to kernels, and (iii) their ability to represent probability distributions without loss of information.
We propose an alternative Nystr"om-based HSIC estimator which handles the $Mge 2$ case, prove its consistency, and demonstrate its applicability.
arXiv Detail & Related papers (2023-02-20T11:51:58Z) - The Franke-Gorini-Kossakowski-Lindblad-Sudarshan (FGKLS) Equation for
Two-Dimensional Systems [62.997667081978825]
Open quantum systems can obey the Franke-Gorini-Kossakowski-Lindblad-Sudarshan (FGKLS) equation.
We exhaustively study the case of a Hilbert space dimension of $2$.
arXiv Detail & Related papers (2022-04-16T07:03:54Z) - Quantum Proofs of Deletion for Learning with Errors [91.3755431537592]
We construct the first fully homomorphic encryption scheme with certified deletion.
Our main technical ingredient is an interactive protocol by which a quantum prover can convince a classical verifier that a sample from the Learning with Errors distribution in the form of a quantum state was deleted.
arXiv Detail & Related papers (2022-03-03T10:07:32Z) - Speeding up Learning Quantum States through Group Equivariant
Convolutional Quantum Ans\"atze [13.651587339535961]
We develop a framework for convolutional quantum circuits with SU$(d)$symmetry.
We prove Harrow's statement on equivalence between $nameSU(d)$ and $S_n$ irrep bases.
arXiv Detail & Related papers (2021-12-14T18:03:43Z) - Annihilating Entanglement Between Cones [77.34726150561087]
We show that Lorentz cones are the only cones with a symmetric base for which a certain stronger version of the resilience property is satisfied.
Our proof exploits the symmetries of the Lorentz cones and applies two constructions resembling protocols for entanglement distillation.
arXiv Detail & Related papers (2021-10-22T15:02:39Z) - Quantum simulation of $\phi^4$ theories in qudit systems [53.122045119395594]
We discuss the implementation of quantum algorithms for lattice $Phi4$ theory on circuit quantum electrodynamics (cQED) system.
The main advantage of qudit systems is that its multi-level characteristic allows the field interaction to be implemented only with diagonal single-qudit gates.
arXiv Detail & Related papers (2021-08-30T16:30:33Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Practical Verification of Quantum Properties in Quantum Approximate
Optimization Runs [9.661732401406587]
We show that measurements in no more than 3 out of the possible $3N$ bases can reconstruct the single-qubit reduced density matrices and measure the ability to create coherent superpositions.
We demonstrate that a subset of such observables can serve as entanglement witnesses for QAOA-MaxCut states, and further argue that they are especially well tailored for this purpose by defining and computing an entanglement potency metric on witnesses.
arXiv Detail & Related papers (2021-05-04T17:33:15Z) - Geometry of Banach spaces: a new route towards Position Based
Cryptography [65.51757376525798]
We study Position Based Quantum Cryptography (PBQC) from the perspective of geometric functional analysis and its connections with quantum games.
The main question we are interested in asks for the optimal amount of entanglement that a coalition of attackers have to share in order to compromise the security of any PBQC protocol.
We show that the understanding of the type properties of some more involved Banach spaces would allow to drop out the assumptions and lead to unconditional lower bounds on the resources used to attack our protocol.
arXiv Detail & Related papers (2021-03-30T13:55:11Z) - Bipartite quantum measurements with optimal single-sided
distinguishability [0.0]
We look for a basis with optimal single-sided mutual state distinguishability in $Ntimes N$ Hilbert space.
In the case $N=2$ of a two-qubit system our solution coincides with the elegant joint measurement introduced by Gisin.
We show that the one-party measurement that distinguishes the states of an optimal basis of the composite system leads to a local quantum state tomography.
arXiv Detail & Related papers (2020-10-28T10:30:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.