Continuous Time Limit of the DTQW in 2D+1 and Plasticity
- URL: http://arxiv.org/abs/2007.01425v2
- Date: Tue, 24 Nov 2020 15:03:00 GMT
- Title: Continuous Time Limit of the DTQW in 2D+1 and Plasticity
- Authors: Michael Manighalam and Giuseppe Di Molfetta
- Abstract summary: We show that discrete time quantum walks can admit plasticity, showing the resulting Hamiltonians.
This dependence on $varepsilon$ encapsulates all functions of $varepsilon$ for which a Taylor series expansion in $varepsilon$ is well defined.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A Plastic Quantum Walk admits both continuous time and continuous spacetime.
The model has been recently proposed by one of the authors in
\cite{molfetta2019quantum}, leading to a general quantum simulation scheme for
simulating fermions in the relativistic and non relativistic regimes. The
extension to two physical dimensions is still missing and here, as a novel
result, we demonstrate necessary and sufficient conditions concerning which
discrete time quantum walks can admit plasticity, showing the resulting
Hamiltonians. We consider coin operators as general $4$ parameter unitary
matrices, with parameters which are function of the lattice step size
$\varepsilon$. This dependence on $\varepsilon$ encapsulates all functions of
$\varepsilon$ for which a Taylor series expansion in $\varepsilon$ is well
defined, making our results very general.
Related papers
- Slow Mixing of Quantum Gibbs Samplers [47.373245682678515]
We present a quantum generalization of these tools through a generic bottleneck lemma.
This lemma focuses on quantum measures of distance, analogous to the classical Hamming distance but rooted in uniquely quantum principles.
Even with sublinear barriers, we use Feynman-Kac techniques to lift classical to quantum ones establishing tight lower bound $T_mathrmmix = 2Omega(nalpha)$.
arXiv Detail & Related papers (2024-11-06T22:51:27Z) - Calculating response functions of coupled oscillators using quantum phase estimation [40.31060267062305]
We study the problem of estimating frequency response functions of systems of coupled, classical harmonic oscillators using a quantum computer.
Our proposed quantum algorithm operates in the standard $s-sparse, oracle-based query access model.
We show that a simple adaptation of our algorithm solves the random glued-trees problem in time.
arXiv Detail & Related papers (2024-05-14T15:28:37Z) - Discrete-coordinate crypto-Hermitian quantum system controlled by
time-dependent Robin boundary conditions [0.0]
unitary quantum mechanics formulated in non-Hermitian (or, more precisely, in hiddenly Hermitian) interaction-picture representation is illustrated via an elementary $N$ by $N$ matrix Hamiltonian $H(t)$ mimicking a 1D-box system with physics controlled by time-dependent boundary conditions.
Our key message is that contrary to the conventional beliefs and in spite of the unitarity of the evolution of the system, neither its "Heisenbergian Hamiltonian" $Sigma(t)$ nor its "Schr"odingerian Hamiltonian" $G(
arXiv Detail & Related papers (2024-01-19T13:28:42Z) - Quantum Speedups for Zero-Sum Games via Improved Dynamic Gibbs Sampling [30.53587208999909]
We give a quantum algorithm for computing an $epsilon$-approximate Nash equilibrium of a zero-sum game in a $m times n$ payoff matrix with bounded entries.
Given a standard quantum oracle for accessing the payoff matrix our algorithm runs in time $widetildeO(sqrtm + ncdot epsilon-2.5 + epsilon-3)$ and outputs a classical representation of the $epsilon$-approximate Nash equilibrium.
arXiv Detail & Related papers (2023-01-10T02:56:49Z) - A New Look at the $C^{0}$-formulation of the Strong Cosmic Censorship
Conjecture [68.8204255655161]
We argue that for generic black hole parameters as initial conditions for Einstein equations, the metric is $C0$-extendable to a larger Lorentzian manifold.
We prove it violates the "complexity=volume" conjecture for a low-temperature hyperbolic AdS$_d+1$ black hole dual to a CFT living on a ($d-1$)-dimensional hyperboloid $H_d-1$.
arXiv Detail & Related papers (2022-06-17T12:14:33Z) - Complementarity in quantum walks [0.08896991256227595]
We study discrete-time quantum walks on $d$-cycles with a position and coin-dependent phase-shift.
For prime $d$ there exists a strong complementarity property between the eigenvectors of two quantum walk evolution operators.
We show that the complementarity is still present in the continuous version of this model, which corresponds to a one-dimensional Dirac particle.
arXiv Detail & Related papers (2022-05-11T12:47:59Z) - Quantum simulation of real-space dynamics [7.143485463760098]
We conduct a systematic study of quantum algorithms for real-space dynamics.
We give applications to several computational problems, including faster real-space simulation of quantum chemistry.
arXiv Detail & Related papers (2022-03-31T13:01:51Z) - On quantum algorithms for the Schr\"odinger equation in the
semi-classical regime [27.175719898694073]
We consider Schr"odinger's equation in the semi-classical regime.
Such a Schr"odinger equation finds many applications, including in Born-Oppenheimer molecular dynamics and Ehrenfest dynamics.
arXiv Detail & Related papers (2021-12-25T20:01:54Z) - Provably accurate simulation of gauge theories and bosonic systems [2.406160895492247]
We develop methods for bounding the rate of growth of local quantum numbers.
For the Hubbard-Holstein model, we compute a bound on $Lambda$ that achieves accuracy $epsilon$.
We also establish a criterion for truncating the Hamiltonian with a provable guarantee on the accuracy of time evolution.
arXiv Detail & Related papers (2021-10-13T18:00:02Z) - Quantum Algorithms for Simulating the Lattice Schwinger Model [63.18141027763459]
We give scalable, explicit digital quantum algorithms to simulate the lattice Schwinger model in both NISQ and fault-tolerant settings.
In lattice units, we find a Schwinger model on $N/2$ physical sites with coupling constant $x-1/2$ and electric field cutoff $x-1/2Lambda$.
We estimate observables which we cost in both the NISQ and fault-tolerant settings by assuming a simple target observable---the mean pair density.
arXiv Detail & Related papers (2020-02-25T19:18:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.