論文の概要: The Global Landscape of Neural Networks: An Overview
- arxiv url: http://arxiv.org/abs/2007.01429v1
- Date: Thu, 2 Jul 2020 22:50:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-14 14:00:58.320789
- Title: The Global Landscape of Neural Networks: An Overview
- Title(参考訳): グローバル・ランドスケープ・オブ・ニューラル・ネットワーク:概要
- Authors: Ruoyu Sun, Dawei Li, Shiyu Liang, Tian Ding, R Srikant
- Abstract要約: ニューラルネットワークの最近の成功は、その損失がそれほど悪くはないことを示唆している。
我々は,「悪い」経路のような幾何学的特性の広いネットワークに関する厳密な結果について論じるとともに,最適化された局所最小値を排除したり,無限大への可視化を減らしたりするいくつかの修正について論じる。
- 参考スコア(独自算出の注目度): 23.79848233534269
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the major concerns for neural network training is that the
non-convexity of the associated loss functions may cause bad landscape. The
recent success of neural networks suggests that their loss landscape is not too
bad, but what specific results do we know about the landscape? In this article,
we review recent findings and results on the global landscape of neural
networks. First, we point out that wide neural nets may have sub-optimal local
minima under certain assumptions. Second, we discuss a few rigorous results on
the geometric properties of wide networks such as "no bad basin", and some
modifications that eliminate sub-optimal local minima and/or decreasing paths
to infinity. Third, we discuss visualization and empirical explorations of the
landscape for practical neural nets. Finally, we briefly discuss some
convergence results and their relation to landscape results.
- Abstract(参考訳): ニューラルネットワークトレーニングにおける大きな懸念の1つは、関連する損失関数の非凸性が景観不良を引き起こす可能性があることである。
最近のニューラルネットワークの成功は、その損失の状況がそれほど悪くはないことを示唆しているが、その状況についてどのような具体的な結果が得られているのだろうか?
本稿では,ニューラルネットワークのグローバルな展望に関する最近の知見と結果について概説する。
まず、広いニューラルネットワークは特定の仮定の下で最適な局所最小値を持つ可能性があることを指摘した。
第二に、"悪い盆地がない"などの広帯域ネットワークの幾何学的特性に関する厳密な結果と、最適化された局所最小値や無限小への経路を除去するいくつかの修正について論じる。
第3に,実用ニューラルネットの景観の可視化と経験的探索について考察する。
最後に,いくつかの収束結果と景観結果との関係について概説する。
関連論文リスト
- Deeper or Wider: A Perspective from Optimal Generalization Error with Sobolev Loss [2.07180164747172]
より深いニューラルネットワーク(DeNN)と、柔軟な数のレイヤと、限られた隠れたレイヤを持つより広いニューラルネットワーク(WeNN)を比較します。
より多くのパラメータがWeNNを好む傾向にあるのに対し、サンプルポイントの増加と損失関数の規則性の向上は、DeNNの採用に傾いている。
論文 参考訳(メタデータ) (2024-01-31T20:10:10Z) - When Expressivity Meets Trainability: Fewer than $n$ Neurons Can Work [59.29606307518154]
幅が$m geq 2n/d$($d$は入力次元)である限り、その表現性は強く、すなわち、訓練損失がゼロの少なくとも1つの大域最小化器が存在することを示す。
また、実現可能な領域がよい局所領域であるような制約付き最適化の定式化も検討し、すべてのKKT点がほぼ大域最小値であることを示す。
論文 参考訳(メタデータ) (2022-10-21T14:41:26Z) - SAR Despeckling Using Overcomplete Convolutional Networks [53.99620005035804]
スペックルはSAR画像を劣化させるため、リモートセンシングにおいて重要な問題である。
近年の研究では、畳み込みニューラルネットワーク(CNN)が古典的解法よりも優れていることが示されている。
本研究は、受容場を制限することで低レベルの特徴を学習することに集中するために、過剰なCNNアーキテクチャを用いる。
本稿では,合成および実SAR画像の非特定化手法と比較して,提案手法により非特定化性能が向上することを示す。
論文 参考訳(メタデータ) (2022-05-31T15:55:37Z) - FuNNscope: Visual microscope for interactively exploring the loss
landscape of fully connected neural networks [77.34726150561087]
ニューラルネットワークの高次元景観特性を探索する方法を示す。
我々は、小さなニューラルネットワークの観測結果をより複雑なシステムに一般化する。
インタラクティブダッシュボードは、いくつかのアプリケーションネットワークを開放する。
論文 参考訳(メタデータ) (2022-04-09T16:41:53Z) - Exact Solutions of a Deep Linear Network [2.2344764434954256]
この研究は、重み減衰とニューロンを持つディープ線形ネットワークの大域的ミニマを解析的に表現することを発見した。
重み減衰はモデルアーキテクチャと強く相互作用し、1ドル以上の隠蔽層を持つネットワークにおいてゼロで悪いミニマを生成できることを示す。
論文 参考訳(メタデータ) (2022-02-10T00:13:34Z) - Taxonomizing local versus global structure in neural network loss
landscapes [60.206524503782006]
ロスランドスケープが世界規模で良好に接続されている場合, 最適なテスト精度が得られることを示す。
また、モデルが小さい場合や、品質の低いデータに訓練された場合、世界規模で接続の不十分なランドスケープが生じる可能性があることも示しています。
論文 参考訳(メタデータ) (2021-07-23T13:37:14Z) - Topological obstructions in neural networks learning [67.8848058842671]
損失勾配関数フローのグローバル特性について検討する。
損失関数とそのモースコンプレックスの位相データ解析を用いて,損失面の大域的特性と勾配軌道に沿った局所的挙動を関連付ける。
論文 参考訳(メタデータ) (2020-12-31T18:53:25Z) - Piecewise linear activations substantially shape the loss surfaces of
neural networks [95.73230376153872]
本稿では,ニューラルネットワークの損失面を著しく形成する線形活性化関数について述べる。
我々はまず、多くのニューラルネットワークの損失面が、大域的なミニマよりも経験的リスクの高い局所的ミニマとして定義される無限の急激な局所的ミニマを持つことを証明した。
一層ネットワークの場合、セル内のすべての局所ミニマが同値類であり、谷に集中しており、セル内のすべてのグローバルミニマであることを示す。
論文 参考訳(メタデータ) (2020-03-27T04:59:34Z) - Avoiding Spurious Local Minima in Deep Quadratic Networks [0.0]
ニューラルアクティベーション機能を持つネットワークにおける平均2乗非線形誤差の景観を特徴付ける。
2次アクティベーションを持つ深層ニューラルネットワークは、類似した景観特性の恩恵を受けることが証明された。
論文 参考訳(メタデータ) (2019-12-31T22:31:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。