論文の概要: Latent Gaussian Model Boosting
- arxiv url: http://arxiv.org/abs/2105.08966v2
- Date: Fri, 21 May 2021 13:42:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-25 03:39:26.695124
- Title: Latent Gaussian Model Boosting
- Title(参考訳): 潜在ガウスモデルブースティング
- Authors: Fabio Sigrist
- Abstract要約: ツリーブースティングは多くのデータセットに対して優れた予測精度を示す。
シミュレーションおよび実世界のデータ実験において,既存の手法と比較して予測精度が向上した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Latent Gaussian models and boosting are widely used techniques in statistics
and machine learning. Tree-boosting shows excellent predictive accuracy on many
data sets, but potential drawbacks are that it assumes conditional independence
of samples, produces discontinuous predictions for, e.g., spatial data, and it
can have difficulty with high-cardinality categorical variables. Latent
Gaussian models, such as Gaussian process and grouped random effects models,
are flexible prior models that allow for making probabilistic predictions.
However, existing latent Gaussian models usually assume either a zero or a
linear prior mean function which can be an unrealistic assumption. This article
introduces a novel approach that combines boosting and latent Gaussian models
in order to remedy the above-mentioned drawbacks and to leverage the advantages
of both techniques. We obtain increased predictive accuracy compared to
existing approaches in both simulated and real-world data experiments.
- Abstract(参考訳): 潜在ガウスモデルとブースティングは統計学や機械学習で広く使われている。
ツリーブースティングは多くのデータセットにおいて優れた予測精度を示すが、潜在的な欠点は、サンプルの条件付き独立性を仮定し、例えば空間データに対する不連続な予測を生成し、高心性カテゴリー変数では困難であることである。
ガウス過程や群ランダム効果モデルのような潜在ガウスモデルは、確率的予測を可能にする柔軟な事前モデルである。
しかし、既存の潜在ガウスモデルは通常、非現実的な仮定となるようなゼロあるいは線形事前平均関数を仮定する。
本稿では,上記の欠点を解消し,両手法の利点を活かすため,ガウスモデルの強化と潜在性を組み合わせた新しい手法を提案する。
シミュレーションおよび実世界のデータ実験における既存手法と比較して予測精度が向上した。
関連論文リスト
- On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
円値ランダム関数上の表現的および解釈可能な分布の族を探索する。
結果の確率モデルは、統計物理学における連続スピンモデルと関係を持つ。
後続推論のために、高速マルコフ連鎖モンテカルロサンプリングに寄与するストラトノビッチのような拡張を導入する。
論文 参考訳(メタデータ) (2024-06-19T01:57:21Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
本稿では,様々な高次元リッジ回帰モデルの訓練および一般化性能の簡潔な導出について述べる。
本稿では,物理と深層学習の背景を持つ読者を対象に,これらのトピックに関する最近の研究成果の紹介とレビューを行う。
論文 参考訳(メタデータ) (2024-05-01T15:59:00Z) - Fusion of Gaussian Processes Predictions with Monte Carlo Sampling [61.31380086717422]
科学と工学において、私たちはしばしば興味のある変数の正確な予測のために設計されたモデルで作業します。
これらのモデルが現実の近似であることを認識し、複数のモデルを同じデータに適用し、結果を統合することが望ましい。
論文 参考訳(メタデータ) (2024-03-03T04:21:21Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
我々は,モンテカルロサンプリングと反復線形解法を組み合わせた確率的アンローリングを導入し,行列逆転を回避した。
理論的解析により,解法の繰り返しによる解法の解法と逆転が最大値推定の勾配推定を高速化することを示した。
シミュレーションおよび実データ実験において、確率的アンロールは、モデル性能の損失を最小限に抑えながら、勾配EMよりも桁違いに高速な潜在ガウスモデルを学習することを示した。
論文 参考訳(メタデータ) (2023-06-05T21:08:34Z) - Robust Gaussian Process Regression with Huber Likelihood [2.7184224088243365]
本稿では,ハマー確率分布として表される観測データの可能性を考慮した,ガウス過程フレームワークにおけるロバストなプロセスモデルを提案する。
提案モデルでは、予測統計に基づく重みを用いて、残差を拡大し、潜伏関数推定における垂直外れ値と悪レバレッジ点の影響を限定する。
論文 参考訳(メタデータ) (2023-01-19T02:59:33Z) - Correcting Model Bias with Sparse Implicit Processes [0.9187159782788579]
SIP(Sparse Implicit Processes)は,データ生成機構がモデルによって入力されるものと強く異なる場合,モデルバイアスを補正できることを示す。
合成データセットを用いて、SIPは、初期推定モデルの正確な予測よりもデータをよりよく反映する予測分布を提供することができることを示す。
論文 参考訳(メタデータ) (2022-07-21T18:00:01Z) - Nonparametric likelihood-free inference with Jensen-Shannon divergence
for simulator-based models with categorical output [1.4298334143083322]
シミュレータに基づく統計モデルに対する自由な推論は、機械学習と統計のコミュニティの両方において、関心の高まりを招いている。
本稿では、Jensen-Shannon- divergenceの計算特性を用いて、モデルパラメータに対する推定、仮説テスト、信頼区間の構築を可能にする理論的結果のセットを導出する。
このような近似はより集中的なアプローチの素早い代替手段であり、シミュレーターベースモデルの多種多様な応用には魅力的である。
論文 参考訳(メタデータ) (2022-05-22T18:00:13Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
本稿では,強化学習目標を直接最適化し,期待される報酬を最大化するための新しいアプローチを提案する。
提案手法は、ユーザ定義プロパティを持つ分子の生成と、所定の目標値を評価する短いピソン表現の同定という2つのタスクで検証する。
論文 参考訳(メタデータ) (2020-10-05T20:03:13Z) - Gaussian Process Regression with Local Explanation [28.90948136731314]
本稿では,各サンプルの予測に寄与する特徴を明らかにするため,局所的な説明を伴うGPRを提案する。
提案モデルでは,各サンプルの予測と説明を,容易に解釈可能な局所線形モデルを用いて行う。
新しい試験サンプルでは, 対象変数と重みベクトルの値と不確かさを予測できる。
論文 参考訳(メタデータ) (2020-07-03T13:22:24Z) - Gaussian Process Boosting [13.162429430481982]
ガウス過程と混合効果モデルを組み合わせた新しい手法を提案する。
シミュレーションおよび実世界のデータセットに対する既存手法と比較して予測精度が向上する。
論文 参考訳(メタデータ) (2020-04-06T13:19:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。