Stochastic Variational Bayesian Inference for a Nonlinear Forward Model
- URL: http://arxiv.org/abs/2007.01675v1
- Date: Fri, 3 Jul 2020 13:30:50 GMT
- Title: Stochastic Variational Bayesian Inference for a Nonlinear Forward Model
- Authors: Michael A. Chappell, Martin S. Craig, Mark W. Woolrich
- Abstract summary: Variational Bayes (VB) has been used to facilitate the calculation of the posterior distribution in the context of nonlinear models from data.
Previously an analytical formulation of VB has been derived for nonlinear model inference on data with additive gaussian noise.
Here a solution is derived that avoids some of the approximations required of the analytical formulation.
- Score: 2.578242050187029
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational Bayes (VB) has been used to facilitate the calculation of the
posterior distribution in the context of Bayesian inference of the parameters
of nonlinear models from data. Previously an analytical formulation of VB has
been derived for nonlinear model inference on data with additive gaussian noise
as an alternative to nonlinear least squares. Here a stochastic solution is
derived that avoids some of the approximations required of the analytical
formulation, offering a solution that can be more flexibly deployed for
nonlinear model inference problems. The stochastic VB solution was used for
inference on a biexponential toy case and the algorithmic parameter space
explored, before being deployed on real data from a magnetic resonance imaging
study of perfusion. The new method was found to achieve comparable parameter
recovery to the analytic solution and be competitive in terms of computational
speed despite being reliant on sampling.
Related papers
- Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models.
We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation.
arXiv Detail & Related papers (2024-08-20T19:06:02Z) - Weak neural variational inference for solving Bayesian inverse problems without forward models: applications in elastography [1.6385815610837167]
We introduce a novel, data-driven approach for solving high-dimensional Bayesian inverse problems based on partial differential equations (PDEs)
The Weak Neural Variational Inference (WNVI) method complements real measurements with virtual observations derived from the physical model.
We demonstrate that WNVI is not only as accurate and more efficient than traditional methods that rely on repeatedly solving the (non-linear) forward problem as a black-box.
arXiv Detail & Related papers (2024-07-30T09:46:03Z) - Stochastic full waveform inversion with deep generative prior for uncertainty quantification [0.0]
Full Waveform Inversion (FWI) involves solving a nonlinear and often non-unique inverse problem.
FWI presents challenges such as local minima trapping and inadequate handling of inherent uncertainties.
We propose leveraging deep generative models as the prior distribution of geophysical parameters for Bayesian inversion.
arXiv Detail & Related papers (2024-06-07T11:44:50Z) - Improving Diffusion Models for Inverse Problems Using Optimal Posterior Covariance [52.093434664236014]
Recent diffusion models provide a promising zero-shot solution to noisy linear inverse problems without retraining for specific inverse problems.
Inspired by this finding, we propose to improve recent methods by using more principled covariance determined by maximum likelihood estimation.
arXiv Detail & Related papers (2024-02-03T13:35:39Z) - Diffusion models for probabilistic programming [56.47577824219207]
Diffusion Model Variational Inference (DMVI) is a novel method for automated approximate inference in probabilistic programming languages (PPLs)
DMVI is easy to implement, allows hassle-free inference in PPLs without the drawbacks of, e.g., variational inference using normalizing flows, and does not make any constraints on the underlying neural network model.
arXiv Detail & Related papers (2023-11-01T12:17:05Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - A probabilistic, data-driven closure model for RANS simulations with aleatoric, model uncertainty [1.8416014644193066]
We propose a data-driven, closure model for Reynolds-averaged Navier-Stokes (RANS) simulations that incorporates aleatoric, model uncertainty.
A fully Bayesian formulation is proposed, combined with a sparsity-inducing prior in order to identify regions in the problem domain where the parametric closure is insufficient.
arXiv Detail & Related papers (2023-07-05T16:53:31Z) - Variational Nonlinear Kalman Filtering with Unknown Process Noise
Covariance [24.23243651301339]
This paper presents a solution for identification of nonlinear state estimation and model parameters based on the approximate Bayesian inference principle.
The performance of the proposed method is verified on radar target tracking applications by both simulated and real-world data.
arXiv Detail & Related papers (2023-05-06T03:34:39Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
This paper introduces a variational iterative alternating scheme for hierarchical inverse problems with gamma hyperpriors.
The proposed variational inference approach yields accurate reconstruction, provides meaningful uncertainty quantification, and is easy to implement.
arXiv Detail & Related papers (2021-11-26T06:33:29Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.