Graph2Kernel Grid-LSTM: A Multi-Cued Model for Pedestrian Trajectory
Prediction by Learning Adaptive Neighborhoods
- URL: http://arxiv.org/abs/2007.01915v2
- Date: Wed, 8 Jul 2020 08:48:41 GMT
- Title: Graph2Kernel Grid-LSTM: A Multi-Cued Model for Pedestrian Trajectory
Prediction by Learning Adaptive Neighborhoods
- Authors: Sirin Haddad and Siew Kei Lam
- Abstract summary: We present a new perspective to interaction modeling by proposing that pedestrian neighborhoods can become adaptive in design.
Our model outperforms state-of-the-art approaches that collate resembling features over several publicly-tested surveillance videos.
- Score: 10.57164270098353
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pedestrian trajectory prediction is a prominent research track that has
advanced towards modelling of crowd social and contextual interactions, with
extensive usage of Long Short-Term Memory (LSTM) for temporal representation of
walking trajectories.
Existing approaches use virtual neighborhoods as a fixed grid for pooling
social states of pedestrians with tuning process that controls how social
interactions are being captured. This entails performance customization to
specific scenes but lowers the generalization capability of the approaches. In
our work, we deploy \textit{Grid-LSTM}, a recent extension of LSTM, which
operates over multidimensional feature inputs. We present a new perspective to
interaction modeling by proposing that pedestrian neighborhoods can become
adaptive in design. We use \textit{Grid-LSTM} as an encoder to learn about
potential future neighborhoods and their influence on pedestrian motion given
the visual and the spatial boundaries. Our model outperforms state-of-the-art
approaches that collate resembling features over several publicly-tested
surveillance videos. The experiment results clearly illustrate the
generalization of our approach across datasets that varies in scene features
and crowd dynamics.
Related papers
- Multi-Transmotion: Pre-trained Model for Human Motion Prediction [68.87010221355223]
Multi-Transmotion is an innovative transformer-based model designed for cross-modality pre-training.
Our methodology demonstrates competitive performance across various datasets on several downstream tasks.
arXiv Detail & Related papers (2024-11-04T23:15:21Z) - LG-Traj: LLM Guided Pedestrian Trajectory Prediction [9.385936248154987]
We introduce LG-Traj, a novel approach to generate motion cues present in pedestrian past/observed trajectories.
These motion cues, along with pedestrian coordinates, facilitate a better understanding of the underlying representation.
Our method employs a transformer-based architecture comprising a motion encoder to model motion patterns and a social decoder to capture social interactions among pedestrians.
arXiv Detail & Related papers (2024-03-12T19:06:23Z) - Social-Transmotion: Promptable Human Trajectory Prediction [65.80068316170613]
Social-Transmotion is a generic Transformer-based model that exploits diverse and numerous visual cues to predict human behavior.
Our approach is validated on multiple datasets, including JTA, JRDB, Pedestrians and Cyclists in Road Traffic, and ETH-UCY.
arXiv Detail & Related papers (2023-12-26T18:56:49Z) - PedFormer: Pedestrian Behavior Prediction via Cross-Modal Attention
Modulation and Gated Multitask Learning [10.812772606528172]
We propose a novel framework that relies on different data modalities to predict future trajectories and crossing actions of pedestrians from an ego-centric perspective.
We show that our model improves state-of-the-art in trajectory and action prediction by up to 22% and 13% respectively on various metrics.
arXiv Detail & Related papers (2022-10-14T15:12:00Z) - LOPR: Latent Occupancy PRediction using Generative Models [49.15687400958916]
LiDAR generated occupancy grid maps (L-OGMs) offer a robust bird's eye-view scene representation.
We propose a framework that decouples occupancy prediction into: representation learning and prediction within the learned latent space.
arXiv Detail & Related papers (2022-10-03T22:04:00Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
We present a simple yet effective pedestrian trajectory prediction model aimed at pedestrians positions prediction in urban-like environments.
Our model is a neural-based architecture that can run several layers of attention blocks and transformers in an iterative sequential fashion.
We show that without explicit introduction of social masks, dynamical models, social pooling layers, or complicated graph-like structures, it is possible to produce on par results with SoTA models.
arXiv Detail & Related papers (2022-06-29T07:49:48Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
We propose a novel graph neural network approach, called TCL, which deals with the dynamically-evolving graph in a continuous-time fashion.
To the best of our knowledge, this is the first attempt to apply contrastive learning to representation learning on dynamic graphs.
arXiv Detail & Related papers (2021-05-17T15:33:25Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
We present a Sparse Graph Convolution Network(SGCN) for pedestrian trajectory prediction.
Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.
arXiv Detail & Related papers (2021-04-04T03:17:42Z) - Graph-SIM: A Graph-based Spatiotemporal Interaction Modelling for
Pedestrian Action Prediction [10.580548257913843]
We propose a novel graph-based model for predicting pedestrian crossing action.
We introduce a new dataset that provides 3D bounding box and pedestrian behavioural annotations for the existing nuScenes dataset.
Our approach achieves state-of-the-art performance by improving on various metrics by more than 15% in comparison to existing methods.
arXiv Detail & Related papers (2020-12-03T18:28:27Z) - Multi-Modal Hybrid Architecture for Pedestrian Action Prediction [14.032334569498968]
We propose a novel multi-modal prediction algorithm that incorporates different sources of information captured from the environment to predict future crossing actions of pedestrians.
Using the existing 2D pedestrian behavior benchmarks and a newly annotated 3D driving dataset, we show that our proposed model achieves state-of-the-art performance in pedestrian crossing prediction.
arXiv Detail & Related papers (2020-11-16T15:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.