論文の概要: Mission schedule of agile satellites based on Proximal Policy
Optimization Algorithm
- arxiv url: http://arxiv.org/abs/2007.02352v1
- Date: Sun, 5 Jul 2020 14:28:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-13 08:11:23.553140
- Title: Mission schedule of agile satellites based on Proximal Policy
Optimization Algorithm
- Title(参考訳): 近位政策最適化アルゴリズムに基づくアジャイル衛星のミッションスケジュール
- Authors: Xinrui Liu
- Abstract要約: 衛星のミッションスケジュールは、近年の宇宙活動において重要な部分である。
本稿では、強化学習アルゴリズムを組み込んで、その問題を記述するための新しい方法を見つける。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mission schedule of satellites is an important part of space operation
nowadays, since the number and types of satellites in orbit are increasing
tremendously and their corresponding tasks are also becoming more and more
complicated. In this paper, a mission schedule model combined with Proximal
Policy Optimization Algorithm(PPO) is proposed. Different from the traditional
heuristic planning method, this paper incorporate reinforcement learning
algorithms into it and find a new way to describe the problem. Several
constraints including data download are considered in this paper.
- Abstract(参考訳): 衛星のミッションスケジュールは、現在、軌道上の衛星の数と種類が著しく増加しており、それに対応するタスクもますます複雑になりつつあるため、宇宙活動の重要な部分である。
本稿では,PPO(Proximal Policy Optimization Algorithm)と組み合わせたミッションスケジュールモデルを提案する。
従来のヒューリスティック計画法とは違い,本論文では強化学習アルゴリズムを組み込んで,問題を記述するための新しい方法を提案する。
本稿では,データダウンロードを含むいくつかの制約について考察する。
関連論文リスト
- Revisiting Space Mission Planning: A Reinforcement Learning-Guided Approach for Multi-Debris Rendezvous [15.699822139827916]
目的は、与えられたすべての破片を訪問して、ミッション全体のランデブーを最小限に抑えるシーケンスを最適化することである。
ニューラルネットワーク(NN)ポリシーが開発され、さまざまなデブリフィールドを持つシミュレーションされた宇宙ミッションで訓練される。
強化学習アプローチは計画効率を著しく向上させる。
論文 参考訳(メタデータ) (2024-09-25T12:50:01Z) - A Distance Similarity-based Genetic Optimization Algorithm for Satellite Ground Network Planning Considering Feeding Mode [53.71516191515285]
衛星データ中継ミッションの送信効率の低さは、現在システムの構築を制約している問題となっている。
本研究では,タスク間の状態特性を考慮した距離類似性に基づく遺伝的最適化アルゴリズム(DSGA)を提案し,タスク間の類似性を決定するための重み付きユークリッド距離法を提案する。
論文 参考訳(メタデータ) (2024-08-29T06:57:45Z) - Security-Sensitive Task Offloading in Integrated Satellite-Terrestrial Networks [15.916368067018169]
本稿では,衛星・地上ネットワーク(ISTN)構造にLEO衛星エッジを配置し,テキストセキュリティに敏感な計算タスクのオフロードを支援することを提案する。
本研究では,タスク割り当ておよびタスクオフロード順序問題を協調最適化問題としてモデル化し,タスクオフロード遅延,エネルギー消費,攻撃回数の最小化と信頼性制約を満たす。
論文 参考訳(メタデータ) (2024-01-20T07:29:55Z) - Quantum algorithms applied to satellite mission planning for Earth
observation [0.0]
本稿では,衛星計画問題の解法として,量子アルゴリズムのセットを紹介する。
この問題は、実際のデータセットで完了した高優先度タスクの数を最大化するものとして定式化されている。
ハイブリッド化量子強化学習エージェントは、高優先度タスクに対して98.5%の完了率を達成することができる。
論文 参考訳(メタデータ) (2023-02-14T16:49:25Z) - Innovations in the field of on-board scheduling technologies [64.41511459132334]
本稿では、ミッション自律のためのソフトウェアフレームワークに組み込まれた、オンボードスケジューラを提案する。
スケジューラは線形整数プログラミングに基づいており、ブランチ・アンド・カット・ソルバの使用に依存している。
この技術は地球観測のシナリオでテストされており、その性能を最先端のスケジューリング技術と比較している。
論文 参考訳(メタデータ) (2022-05-04T12:00:49Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
本稿では、強化学習(RL)と従来の運用研究(OR)アルゴリズムを組み合わせた2段階のフレームワークを開発する。
スケジューリング問題は,有限マルコフ決定過程 (MDP) と混合整数計画過程 (mixed-integer programming process) の2段階で解決される。
その結果,本アルゴリズムは,アジャイルな地球観測衛星スケジューリング問題に対して,安定かつ効率的に十分なスケジューリング計画を得ることができた。
論文 参考訳(メタデータ) (2021-03-10T03:16:12Z) - Reinforcement Learning for Low-Thrust Trajectory Design of
Interplanetary Missions [77.34726150561087]
本稿では, 惑星間軌道のロバスト設計における強化学習の適用について検討する。
最先端アルゴリズムのオープンソース実装が採用されている。
その結果得られた誘導制御ネットワークは、堅牢な名目的軌道と関連する閉ループ誘導法の両方を提供する。
論文 参考訳(メタデータ) (2020-08-19T15:22:15Z) - A Maximum Independent Set Method for Scheduling Earth Observing
Satellite Constellations [41.013477422930755]
本稿では,衛星スケジューリング問題の解法として,実現不可能なグラフ表現を生成する手法を提案する。
光衛星のスカイサット星座と、最大24個の衛星のシミュレートされた星座の、要求された最大10,000の撮像位置のシナリオでテストされている。
論文 参考訳(メタデータ) (2020-08-15T19:32:21Z) - Jump Operator Planning: Goal-Conditioned Policy Ensembles and Zero-Shot
Transfer [71.44215606325005]
本稿では,シーケンシャルなサブゴールタスクの超指数空間における解を高速に計算するための,Jump-Operator Dynamic Programmingという新しいフレームワークを提案する。
このアプローチでは、時間的に拡張された行動として機能する、再利用可能な目標条件付き警察のアンサンブルを制御する。
すると、この部分空間上の目的関数のクラスを、解がグラウンド化に不変であるものとして特定し、最適ゼロショット移動をもたらす。
論文 参考訳(メタデータ) (2020-07-06T05:13:20Z) - Decentralized MCTS via Learned Teammate Models [89.24858306636816]
本稿では,モンテカルロ木探索に基づくトレーニング可能なオンライン分散計画アルゴリズムを提案する。
深層学習と畳み込みニューラルネットワークを用いて正確なポリシー近似を作成可能であることを示す。
論文 参考訳(メタデータ) (2020-03-19T13:10:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。