論文の概要: Security-Sensitive Task Offloading in Integrated Satellite-Terrestrial Networks
- arxiv url: http://arxiv.org/abs/2404.15278v1
- Date: Sat, 20 Jan 2024 07:29:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 11:58:46.110858
- Title: Security-Sensitive Task Offloading in Integrated Satellite-Terrestrial Networks
- Title(参考訳): 総合衛星地上ネットワークにおけるセキュリティ感性タスクオフロード
- Authors: Wenjun Lan, Kongyang Chen, Jiannong Cao, Yikai Li, Ning Li, Qi Chen, Yuvraj Sahni,
- Abstract要約: 本稿では,衛星・地上ネットワーク(ISTN)構造にLEO衛星エッジを配置し,テキストセキュリティに敏感な計算タスクのオフロードを支援することを提案する。
本研究では,タスク割り当ておよびタスクオフロード順序問題を協調最適化問題としてモデル化し,タスクオフロード遅延,エネルギー消費,攻撃回数の最小化と信頼性制約を満たす。
- 参考スコア(独自算出の注目度): 15.916368067018169
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid development of sixth-generation (6G) communication technology, global communication networks are moving towards the goal of comprehensive and seamless coverage. In particular, low earth orbit (LEO) satellites have become a critical component of satellite communication networks. The emergence of LEO satellites has brought about new computational resources known as the \textit{LEO satellite edge}, enabling ground users (GU) to offload computing tasks to the resource-rich LEO satellite edge. However, existing LEO satellite computational offloading solutions primarily focus on optimizing system performance, neglecting the potential issue of malicious satellite attacks during task offloading. In this paper, we propose the deployment of LEO satellite edge in an integrated satellite-terrestrial networks (ISTN) structure to support \textit{security-sensitive computing task offloading}. We model the task allocation and offloading order problem as a joint optimization problem to minimize task offloading delay, energy consumption, and the number of attacks while satisfying reliability constraints. To achieve this objective, we model the task offloading process as a Markov decision process (MDP) and propose a security-sensitive task offloading strategy optimization algorithm based on proximal policy optimization (PPO). Experimental results demonstrate that our algorithm significantly outperforms other benchmark methods in terms of performance.
- Abstract(参考訳): 第6世代(6G)通信技術の急速な発展に伴い,グローバル通信ネットワークは包括的かつシームレスな網羅的目標に向かっている。
特に、低軌道衛星(LEO)は衛星通信ネットワークの重要な構成要素となっている。
LEO衛星の出現は、新しい計算資源である「textit{LEO satellite edge}」をもたらし、地上ユーザー(GU)が計算タスクをリソース豊富なLEO衛星エッジにオフロードできるようにする。
しかし、既存のLEO衛星オフロードソリューションは主にシステム性能の最適化に重点を置いており、タスクオフロード時の悪意ある衛星攻撃の潜在的な問題を無視している。
本稿では,衛星・地上ネットワーク(ISTN)構造におけるLEO衛星エッジの展開を提案する。
本研究では,タスク割り当ておよびタスクオフロード順序問題を協調最適化問題としてモデル化し,タスクオフロード遅延,エネルギー消費,攻撃回数の最小化と信頼性制約を満たす。
この目的を達成するために,タスクオフロード処理をマルコフ決定プロセス(MDP)としてモデル化し,PPOに基づくセキュリティに敏感なタスクオフロード戦略最適化アルゴリズムを提案する。
実験結果から,本アルゴリズムは,他のベンチマーク手法よりも性能的に優れていることが示された。
関連論文リスト
- A Sharded Blockchain-Based Secure Federated Learning Framework for LEO Satellite Networks [4.034610694515541]
低地球軌道(LEO)衛星ネットワークは、宇宙ベースの人工知能(AI)アプリケーションにますます不可欠である。
商業利用が拡大するにつれて、LEO衛星ネットワークはサイバー攻撃のリスクが高まる。
我々は、SBFL-LEOと呼ばれるLEOネットワークのためのシャーディングブロックチェーンベースのフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-09T10:22:52Z) - Reinforcement Learning-enabled Satellite Constellation Reconfiguration and Retasking for Mission-Critical Applications [10.652828373995519]
衛星故障が星座性能と関連するタスク要求に与える影響を批判的に評価する。
本稿では、強化学習(RL)技術、特にQ学習、ポリシーグラディエント、ディープQネットワーク(DQN)、およびPPOを紹介する。
その結果, DQNとPPOは, 平均報酬, タスク完了率, 応答時間で有効な結果が得られることを示した。
論文 参考訳(メタデータ) (2024-09-03T20:01:56Z) - A Distance Similarity-based Genetic Optimization Algorithm for Satellite Ground Network Planning Considering Feeding Mode [53.71516191515285]
衛星データ中継ミッションの送信効率の低さは、現在システムの構築を制約している問題となっている。
本研究では,タスク間の状態特性を考慮した距離類似性に基づく遺伝的最適化アルゴリズム(DSGA)を提案し,タスク間の類似性を決定するための重み付きユークリッド距離法を提案する。
論文 参考訳(メタデータ) (2024-08-29T06:57:45Z) - Leveraging Large Language Models for Integrated Satellite-Aerial-Terrestrial Networks: Recent Advances and Future Directions [47.791246017237]
統合衛星、航空、地上ネットワーク(ISATN)は多様な通信技術の洗練された収束を表現している。
本稿では,Large Language Models (LLM) を ISATN に統合するトランスフォーメーションの可能性について検討する。
論文 参考訳(メタデータ) (2024-07-05T15:23:43Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
本稿では,Vehicular Edge Computingにおける共同DNNパーティショニング,タスクオフロード,リソース割り当ての問題を定式化する。
我々の目標は、時間とともにシステムの安定性を保証しながら、DNNベースのタスク完了時間を最小化することである。
拡散モデルの革新的利用を取り入れたマルチエージェント拡散に基づく深層強化学習(MAD2RL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-11T06:31:03Z) - Satellite Federated Edge Learning: Architecture Design and Convergence Analysis [47.057886812985984]
本稿では,FEDMEGAという新しいFEELアルゴリズムを提案する。
軌道内モデルアグリゲーションのための衛星間リンク(ISL)を統合することにより、提案アルゴリズムは低データレートと断続的なGSLの使用を著しく削減する。
提案手法は,環全リデューサに基づく軌道内アグリゲーション機構と,グローバルモデルアグリゲーションのためのネットワークフローベースのトランスミッションスキームを組み合わせたものである。
論文 参考訳(メタデータ) (2024-04-02T11:59:58Z) - Distance-Only Task Orchestration Algorithm for Energy Efficiency in Satellite-Based Mist Computing [1.0225653612678713]
本稿では,衛星接近を優先する重計算タスクオフロードアルゴリズムを提案する。
提案アルゴリズムは、衛星エネルギー消費、平均的なエンドツーエンド遅延、タスク成功率の観点から、他のオフロード方式よりも優れている。
論文 参考訳(メタデータ) (2023-11-24T06:38:41Z) - Deep Learning Aided Routing for Space-Air-Ground Integrated Networks
Relying on Real Satellite, Flight, and Shipping Data [79.96177511319713]
現在の海上通信は主に単なる送信資源を持つ衛星に依存しており、現代の地上無線ネットワークよりも性能が劣っている。
大陸横断航空輸送の増加に伴い、商業旅客機に依存した航空アドホックネットワークという有望な概念は、空対地およびマルチホップ空対空リンクを介して衛星ベースの海上通信を強化する可能性がある。
低軌道衛星コンステレーション、旅客機、地上基地局、船舶がそれぞれ宇宙、航空、船舶として機能する、ユビキタスな海上通信を支援するための宇宙地上統合ネットワーク(SAGIN)を提案する。
論文 参考訳(メタデータ) (2021-10-28T14:12:10Z) - Deep Reinforcement Learning for Delay-Oriented IoT Task Scheduling in
Space-Air-Ground Integrated Network [24.022108191145527]
宇宙空間統合ネットワーク(SAGIN)における遅延指向モノのインターネット(IoT)サービスにおけるタスクスケジューリング問題について検討する。
検討されたシナリオでは、無人航空機(UAV)がIoTデバイスからコンピューティングタスクを収集し、オンラインのオフロード決定を行う。
我々の目的は、UAVエネルギー容量の制約により、タスクのオフロードと計算遅延を最小限に抑えるタスクスケジューリングポリシーを設計することである。
論文 参考訳(メタデータ) (2020-10-04T02:58:03Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
低軌道軌道(LEO)衛星のメガコンステレーションは、低レイテンシで長距離通信を可能にする可能性がある。
軌道上の星座から選択されたLEO衛星を用いて、2つの遠距離地上端末間でパケットを転送する問題について検討する。
エンドツーエンドのデータレートを最大化するためには、衛星アソシエーションとHAPロケーションを最適化する必要がある。
本稿では, 深部強化学習(DRL)と新しい動作次元低減技術を用いてこの問題に対処する。
論文 参考訳(メタデータ) (2020-05-26T05:39:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。