論文の概要: Group Equivariant Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2007.03437v1
- Date: Wed, 1 Jul 2020 02:38:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-14 21:41:41.357629
- Title: Group Equivariant Deep Reinforcement Learning
- Title(参考訳): グループ同変深層強化学習
- Authors: Arnab Kumar Mondal, Pratheeksha Nair, Kaleem Siddiqi
- Abstract要約: 我々は、RLエージェントの訓練に同変CNNを用い、変換同変Q値近似のための誘導バイアスについて検討する。
我々は,RLエージェントの性能と試料効率を高対称な環境下で劇的に向上させることを実証した。
- 参考スコア(独自算出の注目度): 4.997686360064921
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In Reinforcement Learning (RL), Convolutional Neural Networks(CNNs) have been
successfully applied as function approximators in Deep Q-Learning algorithms,
which seek to learn action-value functions and policies in various
environments. However, to date, there has been little work on the learning of
symmetry-transformation equivariant representations of the input environment
state. In this paper, we propose the use of Equivariant CNNs to train RL agents
and study their inductive bias for transformation equivariant Q-value
approximation. We demonstrate that equivariant architectures can dramatically
enhance the performance and sample efficiency of RL agents in a highly
symmetric environment while requiring fewer parameters. Additionally, we show
that they are robust to changes in the environment caused by affine
transformations.
- Abstract(参考訳): 強化学習(rl)において、畳み込みニューラルネットワーク(cnns)は、様々な環境でアクション値関数とポリシーを学習しようとするディープq学習アルゴリズムにおいて、関数近似としてうまく適用されている。
しかし、これまでは入力環境状態の対称性変換同変表現の学習についてはほとんど研究されていない。
本稿では,RLエージェントの学習に同変CNNを用い,その帰納バイアスを変換同変Q値近似に用いることを提案する。
我々は,RLエージェントの性能と試料効率を,パラメータの少ない高対称性環境下で劇的に向上させることができることを示した。
さらに,アフィン変換による環境変化に対して頑健であることを示す。
関連論文リスト
- Approximate Equivariance in Reinforcement Learning [35.04248486334824]
等変ニューラルネットワークは強化学習において大きな成功を収めている。
多くの問題において、近似対称性のみが存在しており、これは正確な対称性を不適切なものにしている。
我々は、強化学習におけるほぼ同変のアルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-11-06T19:44:46Z) - Equivariant Reinforcement Learning under Partial Observability [18.87759041528553]
本稿では,対称性が効果的な学習に有用な帰納的バイアスとなる部分観測可能な領域を同定する。
我々のアクター批判型強化学習エージェントは、過去におけるソリューションを、関連するシナリオで再利用することができる。
論文 参考訳(メタデータ) (2024-08-26T15:07:01Z) - Equivariant Ensembles and Regularization for Reinforcement Learning in Map-based Path Planning [5.69473229553916]
本稿では,特定のニューラルネットワーク成分を使わずに,同変ポリシーと不変値関数を構築する手法を提案する。
等変アンサンブルと正則化がサンプル効率と性能にどのような影響を与えるかを示す。
論文 参考訳(メタデータ) (2024-03-19T16:01:25Z) - Transformers as Statisticians: Provable In-Context Learning with
In-Context Algorithm Selection [88.23337313766353]
この研究はまず、変換器がICLを実行するための包括的な統計理論を提供する。
コンテクストにおいて、トランスフォーマーは、幅広い種類の標準機械学習アルゴリズムを実装可能であることを示す。
エンフィングル変換器は、異なるベースICLアルゴリズムを適応的に選択することができる。
論文 参考訳(メタデータ) (2023-06-07T17:59:31Z) - Optimization Dynamics of Equivariant and Augmented Neural Networks [2.7918308693131135]
対称データに基づくニューラルネットワークの最適化について検討する。
アーキテクチャを制約する戦略を、データ拡張を使用する戦略と同等に扱う戦略と比較する。
後者の状況においても, 定常点が拡張トレーニングにおいて不安定であることは明らかだが, 明らかな同変モデルに対しては安定である。
論文 参考訳(メタデータ) (2023-03-23T17:26:12Z) - Deep Neural Networks with Efficient Guaranteed Invariances [77.99182201815763]
我々は、性能改善の問題、特にディープニューラルネットワークのサンプル複雑性に対処する。
群同変畳み込みは同変表現を得るための一般的なアプローチである。
本稿では,各ストリームが異なる変換に不変なマルチストリームアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-03-02T20:44:45Z) - Improving the Sample-Complexity of Deep Classification Networks with
Invariant Integration [77.99182201815763]
変換によるクラス内分散に関する事前知識を活用することは、ディープニューラルネットワークのサンプル複雑性を改善するための強力な方法である。
そこで本研究では,アプリケーションの複雑な問題に対処するために,プルーニング法に基づく新しい単項選択アルゴリズムを提案する。
本稿では,Rotated-MNIST,SVHN,CIFAR-10データセットにおけるサンプルの複雑さの改善について述べる。
論文 参考訳(メタデータ) (2022-02-08T16:16:11Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) は、新しい同変層と関連するスカラー化およびベクトル化層に基づいて構築されている。
シミュレーションされたニュートン力学系の軌跡を全観測データと部分観測データで予測する手法について検討した。
論文 参考訳(メタデータ) (2021-10-26T14:26:25Z) - A New Representation of Successor Features for Transfer across
Dissimilar Environments [60.813074750879615]
多くの実世界のRL問題は、異なるダイナミクスを持つ環境間での移動を必要とする。
ガウス過程を用いて後継特徴関数をモデル化する手法を提案する。
我々の理論的解析は、この手法の収束と、後続特徴関数のモデル化における有界誤差を証明している。
論文 参考訳(メタデータ) (2021-07-18T12:37:05Z) - Exploring Complementary Strengths of Invariant and Equivariant
Representations for Few-Shot Learning [96.75889543560497]
多くの現実世界では、多数のラベル付きサンプルの収集は不可能です。
少ないショット学習はこの問題に対処するための主要なアプローチであり、目的は限られた数のサンプルの存在下で新しいカテゴリに迅速に適応することです。
幾何学的変換の一般集合に対する等分散と不変性を同時に強制する新しい訓練機構を提案する。
論文 参考訳(メタデータ) (2021-03-01T21:14:33Z) - Incorporating Symmetry into Deep Dynamics Models for Improved
Generalization [24.363954435050264]
本稿では,畳み込みニューラルネットワークに対称性を組み込むことにより,精度の向上と一般化を提案する。
我々のモデルは、対称性群変換による分布シフトに対して理論的かつ実験的に堅牢である。
画像やテキストアプリケーションと比較して、我々の研究は、高次元システムに同変ニューラルネットワークを適用するための重要なステップである。
論文 参考訳(メタデータ) (2020-02-08T01:28:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。