論文の概要: Improving Equivariant Model Training via Constraint Relaxation
- arxiv url: http://arxiv.org/abs/2408.13242v2
- Date: Thu, 02 Jan 2025 22:07:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-06 15:09:24.234820
- Title: Improving Equivariant Model Training via Constraint Relaxation
- Title(参考訳): 制約緩和による同変モデルトレーニングの改善
- Authors: Stefanos Pertigkiozoglou, Evangelos Chatzipantazis, Shubhendu Trivedi, Kostas Daniilidis,
- Abstract要約: そこで本研究では,トレーニング中の厳密な均衡制約を緩和することにより,そのようなモデルの最適化を改善する新しい枠組みを提案する。
本研究では,様々な最先端ネットワークアーキテクチャの実験結果を提供し,このトレーニングフレームワークが一般化性能を向上した同変モデルを実現する方法を示す。
- 参考スコア(独自算出の注目度): 31.507956579770088
- License:
- Abstract: Equivariant neural networks have been widely used in a variety of applications due to their ability to generalize well in tasks where the underlying data symmetries are known. Despite their successes, such networks can be difficult to optimize and require careful hyperparameter tuning to train successfully. In this work, we propose a novel framework for improving the optimization of such models by relaxing the hard equivariance constraint during training: We relax the equivariance constraint of the network's intermediate layers by introducing an additional non-equivariant term that we progressively constrain until we arrive at an equivariant solution. By controlling the magnitude of the activation of the additional relaxation term, we allow the model to optimize over a larger hypothesis space containing approximate equivariant networks and converge back to an equivariant solution at the end of training. We provide experimental results on different state-of-the-art network architectures, demonstrating how this training framework can result in equivariant models with improved generalization performance. Our code is available at https://github.com/StefanosPert/Equivariant_Optimization_CR
- Abstract(参考訳): 等価ニューラルネットワークは、基礎となるデータ対称性が知られているタスクでうまく一般化できるため、様々なアプリケーションで広く利用されている。
彼らの成功にもかかわらず、そのようなネットワークは最適化が困難であり、トレーニングを成功させるためには、注意深いハイパーパラメータチューニングが必要である。
そこで本研究では,トレーニング中のハード均衡制約を緩和することにより,そのようなモデルの最適化を改善するための新しい枠組みを提案する: 等変解に到達するまで,段階的に制約する非同変項を導入することにより,ネットワーク中間層の等変制約を緩和する。
追加緩和項の活性化の大きさを制御することにより、近似同変ネットワークを含むより大きな仮説空間を最適化し、訓練の終わりに同変解に収束させることができる。
本研究では,様々な最先端ネットワークアーキテクチャの実験結果を提供し,このトレーニングフレームワークが一般化性能を向上した同変モデルを実現する方法を示す。
私たちのコードはhttps://github.com/StefanosPert/Equivariant_Optimization_CRで利用可能です。
関連論文リスト
- Equivariant Ensembles and Regularization for Reinforcement Learning in Map-based Path Planning [5.69473229553916]
本稿では,特定のニューラルネットワーク成分を使わずに,同変ポリシーと不変値関数を構築する手法を提案する。
等変アンサンブルと正則化がサンプル効率と性能にどのような影響を与えるかを示す。
論文 参考訳(メタデータ) (2024-03-19T16:01:25Z) - Universal Neural Functionals [67.80283995795985]
多くの現代の機械学習タスクでは、ウェイトスペース機能を処理することが難しい問題である。
最近の研究は、単純なフィードフォワードネットワークの置換対称性に同値な有望な重み空間モデルを開発した。
本研究は,任意の重み空間に対する置換同変モデルを自動的に構築するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-07T20:12:27Z) - Equivariant Adaptation of Large Pretrained Models [20.687626756753563]
正規化ネットワークは,大規模な事前学習ネットワークの同種化に有効であることを示す。
データセットに依存した事前情報を用いて正準化関数を通知し、その性能を維持しながら、大きな事前訓練されたモデルを同変させることができる。
論文 参考訳(メタデータ) (2023-10-02T21:21:28Z) - Deep Neural Networks with Efficient Guaranteed Invariances [77.99182201815763]
我々は、性能改善の問題、特にディープニューラルネットワークのサンプル複雑性に対処する。
群同変畳み込みは同変表現を得るための一般的なアプローチである。
本稿では,各ストリームが異なる変換に不変なマルチストリームアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-03-02T20:44:45Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - Relaxing Equivariance Constraints with Non-stationary Continuous Filters [20.74154804898478]
提案したパラメータ化は、ニューラルネットワークの調整可能な対称性構造を可能にするビルディングブロックと考えることができる。
CIFAR-10 および CIFAR-100 画像分類タスクにおいて, ソフトな等式が試験精度の向上につながることを実験的に検証した。
論文 参考訳(メタデータ) (2022-04-14T18:08:36Z) - Improving the Sample-Complexity of Deep Classification Networks with
Invariant Integration [77.99182201815763]
変換によるクラス内分散に関する事前知識を活用することは、ディープニューラルネットワークのサンプル複雑性を改善するための強力な方法である。
そこで本研究では,アプリケーションの複雑な問題に対処するために,プルーニング法に基づく新しい単項選択アルゴリズムを提案する。
本稿では,Rotated-MNIST,SVHN,CIFAR-10データセットにおけるサンプルの複雑さの改善について述べる。
論文 参考訳(メタデータ) (2022-02-08T16:16:11Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) は、新しい同変層と関連するスカラー化およびベクトル化層に基づいて構築されている。
シミュレーションされたニュートン力学系の軌跡を全観測データと部分観測データで予測する手法について検討した。
論文 参考訳(メタデータ) (2021-10-26T14:26:25Z) - A Flexible Framework for Designing Trainable Priors with Adaptive
Smoothing and Game Encoding [57.1077544780653]
我々は、前方通過を非滑らかな凸最適化問題として解釈できるニューラルネットワーク層の設計とトレーニングのための一般的なフレームワークを紹介する。
グラフのノードに代表されるローカルエージェントによって解決され、正規化関数を介して相互作用する凸ゲームに焦点を当てる。
このアプローチは、訓練可能なエンドツーエンドのディープモデル内で、古典的な画像の事前使用を可能にするため、画像の問題を解決するために魅力的である。
論文 参考訳(メタデータ) (2020-06-26T08:34:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。