Imitation Learning Approach for AI Driving Olympics Trained on
Real-world and Simulation Data Simultaneously
- URL: http://arxiv.org/abs/2007.03514v1
- Date: Tue, 7 Jul 2020 14:48:11 GMT
- Title: Imitation Learning Approach for AI Driving Olympics Trained on
Real-world and Simulation Data Simultaneously
- Authors: Mikita Sazanovich, Konstantin Chaika, Kirill Krinkin, Aleksei Shpilman
- Abstract summary: We describe our winning approach to solving the Lane Following Challenge at the AI Driving Olympics Competition.
We employed the imitation learning algorithm and trained it on a dataset collected from sources both from simulation and real-world.
- Score: 3.1014707658956793
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we describe our winning approach to solving the Lane Following
Challenge at the AI Driving Olympics Competition through imitation learning on
a mixed set of simulation and real-world data. AI Driving Olympics is a
two-stage competition: at stage one, algorithms compete in a simulated
environment with the best ones advancing to a real-world final. One of the main
problems that participants encounter during the competition is that algorithms
trained for the best performance in simulated environments do not hold up in a
real-world environment and vice versa. Classic control algorithms also do not
translate well between tasks since most of them have to be tuned to specific
driving conditions such as lighting, road type, camera position, etc. To
overcome this problem, we employed the imitation learning algorithm and trained
it on a dataset collected from sources both from simulation and real-world,
forcing our model to perform equally well in all environments.
Related papers
- Towards Open-World Mobile Manipulation in Homes: Lessons from the Neurips 2023 HomeRobot Open Vocabulary Mobile Manipulation Challenge [93.4434417387526]
We propose Open Vocabulary Mobile Manipulation as a key benchmark task for robotics.
We organized a NeurIPS 2023 competition featuring both simulation and real-world components to evaluate solutions to this task.
We detail the results and methodologies used, both in simulation and real-world settings.
arXiv Detail & Related papers (2024-07-09T15:15:01Z) - Learning Interactive Real-World Simulators [96.5991333400566]
We explore the possibility of learning a universal simulator of real-world interaction through generative modeling.
We use the simulator to train both high-level vision-language policies and low-level reinforcement learning policies.
Video captioning models can benefit from training with simulated experience, opening up even wider applications.
arXiv Detail & Related papers (2023-10-09T19:42:22Z) - End-to-end Lidar-Driven Reinforcement Learning for Autonomous Racing [0.0]
Reinforcement Learning (RL) has emerged as a transformative approach in the domains of automation and robotics.
This study develops and trains an RL agent to navigate a racing environment solely using feedforward raw lidar and velocity data.
The agent's performance is then experimentally evaluated in a real-world racing scenario.
arXiv Detail & Related papers (2023-09-01T07:03:05Z) - Real Robot Challenge 2022: Learning Dexterous Manipulation from Offline
Data in the Real World [38.54892412474853]
The Real Robot Challenge 2022 served as a bridge between the reinforcement learning and robotics communities.
We asked the participants to learn two dexterous manipulation tasks involving pushing, grasping, and in-hand orientation from provided real-robot datasets.
An extensive software documentation and an initial stage based on a simulation of the real set-up made the competition particularly accessible.
arXiv Detail & Related papers (2023-08-15T12:40:56Z) - Discrete Control in Real-World Driving Environments using Deep
Reinforcement Learning [2.467408627377504]
We introduce a framework (perception, planning, and control) in a real-world driving environment that transfers the real-world environments into gaming environments.
We propose variations of existing Reinforcement Learning (RL) algorithms in a multi-agent setting to learn and execute the discrete control in real-world environments.
arXiv Detail & Related papers (2022-11-29T04:24:03Z) - Sim-to-Real via Sim-to-Seg: End-to-end Off-road Autonomous Driving
Without Real Data [56.49494318285391]
We present Sim2Seg, a re-imagining of RCAN that crosses the visual reality gap for off-road autonomous driving.
This is done by learning to translate randomized simulation images into simulated segmentation and depth maps.
This allows us to train an end-to-end RL policy in simulation, and directly deploy in the real-world.
arXiv Detail & Related papers (2022-10-25T17:50:36Z) - DeXtreme: Transfer of Agile In-hand Manipulation from Simulation to
Reality [64.51295032956118]
We train a policy that can perform robust dexterous manipulation on an anthropomorphic robot hand.
Our work reaffirms the possibilities of sim-to-real transfer for dexterous manipulation in diverse kinds of hardware and simulator setups.
arXiv Detail & Related papers (2022-10-25T01:51:36Z) - Learning to Simulate on Sparse Trajectory Data [26.718807213824853]
We present a novel framework ImInGAIL to address the problem of learning to simulate the driving behavior from sparse real-world data.
To the best of our knowledge, we are the first to tackle the data sparsity issue for behavior learning problems.
arXiv Detail & Related papers (2021-03-22T13:42:11Z) - Reactive Long Horizon Task Execution via Visual Skill and Precondition
Models [59.76233967614774]
We describe an approach for sim-to-real training that can accomplish unseen robotic tasks using models learned in simulation to ground components of a simple task planner.
We show an increase in success rate from 91.6% to 98% in simulation and from 10% to 80% success rate in the real-world as compared with naive baselines.
arXiv Detail & Related papers (2020-11-17T15:24:01Z) - Robust Reinforcement Learning-based Autonomous Driving Agent for
Simulation and Real World [0.0]
We present a DRL-based algorithm that is capable of performing autonomous robot control using Deep Q-Networks (DQN)
In our approach, the agent is trained in a simulated environment and it is able to navigate both in a simulated and real-world environment.
The trained agent is able to run on limited hardware resources and its performance is comparable to state-of-the-art approaches.
arXiv Detail & Related papers (2020-09-23T15:23:54Z) - RoboTHOR: An Open Simulation-to-Real Embodied AI Platform [56.50243383294621]
We introduce RoboTHOR to democratize research in interactive and embodied visual AI.
We show there exists a significant gap between the performance of models trained in simulation when they are tested in both simulations and their carefully constructed physical analogs.
arXiv Detail & Related papers (2020-04-14T20:52:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.