Towards Open-World Mobile Manipulation in Homes: Lessons from the Neurips 2023 HomeRobot Open Vocabulary Mobile Manipulation Challenge
- URL: http://arxiv.org/abs/2407.06939v1
- Date: Tue, 9 Jul 2024 15:15:01 GMT
- Title: Towards Open-World Mobile Manipulation in Homes: Lessons from the Neurips 2023 HomeRobot Open Vocabulary Mobile Manipulation Challenge
- Authors: Sriram Yenamandra, Arun Ramachandran, Mukul Khanna, Karmesh Yadav, Jay Vakil, Andrew Melnik, Michael Büttner, Leon Harz, Lyon Brown, Gora Chand Nandi, Arjun PS, Gaurav Kumar Yadav, Rahul Kala, Robert Haschke, Yang Luo, Jinxin Zhu, Yansen Han, Bingyi Lu, Xuan Gu, Qinyuan Liu, Yaping Zhao, Qiting Ye, Chenxiao Dou, Yansong Chua, Volodymyr Kuzma, Vladyslav Humennyy, Ruslan Partsey, Jonathan Francis, Devendra Singh Chaplot, Gunjan Chhablani, Alexander Clegg, Theophile Gervet, Vidhi Jain, Ram Ramrakhya, Andrew Szot, Austin Wang, Tsung-Yen Yang, Aaron Edsinger, Charlie Kemp, Binit Shah, Zsolt Kira, Dhruv Batra, Roozbeh Mottaghi, Yonatan Bisk, Chris Paxton,
- Abstract summary: We propose Open Vocabulary Mobile Manipulation as a key benchmark task for robotics.
We organized a NeurIPS 2023 competition featuring both simulation and real-world components to evaluate solutions to this task.
We detail the results and methodologies used, both in simulation and real-world settings.
- Score: 93.4434417387526
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In order to develop robots that can effectively serve as versatile and capable home assistants, it is crucial for them to reliably perceive and interact with a wide variety of objects across diverse environments. To this end, we proposed Open Vocabulary Mobile Manipulation as a key benchmark task for robotics: finding any object in a novel environment and placing it on any receptacle surface within that environment. We organized a NeurIPS 2023 competition featuring both simulation and real-world components to evaluate solutions to this task. Our baselines on the most challenging version of this task, using real perception in simulation, achieved only an 0.8% success rate; by the end of the competition, the best participants achieved an 10.8\% success rate, a 13x improvement. We observed that the most successful teams employed a variety of methods, yet two common threads emerged among the best solutions: enhancing error detection and recovery, and improving the integration of perception with decision-making processes. In this paper, we detail the results and methodologies used, both in simulation and real-world settings. We discuss the lessons learned and their implications for future research. Additionally, we compare performance in real and simulated environments, emphasizing the necessity for robust generalization to novel settings.
Related papers
- A Retrospective on the Robot Air Hockey Challenge: Benchmarking Robust, Reliable, and Safe Learning Techniques for Real-world Robotics [53.33976793493801]
We organized the Robot Air Hockey Challenge at the NeurIPS 2023 conference.
We focus on practical challenges in robotics, such as the sim-to-real gap, low-level control issues, safety problems, real-time requirements, and the limited availability of real-world data.
Results show that solutions combining learning-based approaches with prior knowledge outperform those relying solely on data when real-world deployment is challenging.
arXiv Detail & Related papers (2024-11-08T17:20:47Z) - VITAL: Visual Teleoperation to Enhance Robot Learning through Human-in-the-Loop Corrections [10.49712834719005]
We propose a low-cost visual teleoperation system for bimanual manipulation tasks, called VITAL.
Our approach leverages affordable hardware and visual processing techniques to collect demonstrations.
We enhance the generalizability and robustness of the learned policies by utilizing both real and simulated environments.
arXiv Detail & Related papers (2024-07-30T23:29:47Z) - HomeRobot: Open-Vocabulary Mobile Manipulation [107.05702777141178]
Open-Vocabulary Mobile Manipulation (OVMM) is the problem of picking any object in any unseen environment, and placing it in a commanded location.
HomeRobot has two components: a simulation component, which uses a large and diverse curated object set in new, high-quality multi-room home environments; and a real-world component, providing a software stack for the low-cost Hello Robot Stretch.
arXiv Detail & Related papers (2023-06-20T14:30:32Z) - CorNav: Autonomous Agent with Self-Corrected Planning for Zero-Shot Vision-and-Language Navigation [73.78984332354636]
CorNav is a novel zero-shot framework for vision-and-language navigation.
It incorporates environmental feedback for refining future plans and adjusting its actions.
It consistently outperforms all baselines in a zero-shot multi-task setting.
arXiv Detail & Related papers (2023-06-17T11:44:04Z) - Language-Conditioned Imitation Learning with Base Skill Priors under Unstructured Data [26.004807291215258]
Language-conditioned robot manipulation aims to develop robots capable of understanding and executing complex tasks.
We propose a general-purpose, language-conditioned approach that combines base skill priors and imitation learning under unstructured data.
We assess our model's performance in both simulated and real-world environments using a zero-shot setting.
arXiv Detail & Related papers (2023-05-30T14:40:38Z) - Phone2Proc: Bringing Robust Robots Into Our Chaotic World [50.51598304564075]
Phone2Proc is a method that uses a 10-minute phone scan and conditional procedural generation to create a distribution of training scenes.
The generated scenes are conditioned on the wall layout and arrangement of large objects from the scan.
Phone2Proc shows massive improvements from 34.7% to 70.7% success rate in sim-to-real ObjectNav performance.
arXiv Detail & Related papers (2022-12-08T18:52:27Z) - Practical Imitation Learning in the Real World via Task Consistency Loss [18.827979446629296]
This paper introduces a self-supervised loss that encourages sim and real alignment both at the feature and action-prediction levels.
We achieve 80% success across ten seen and unseen scenes using only 16.2 hours of teleoperated demonstrations in sim and real.
arXiv Detail & Related papers (2022-02-03T21:43:06Z) - Reactive Long Horizon Task Execution via Visual Skill and Precondition
Models [59.76233967614774]
We describe an approach for sim-to-real training that can accomplish unseen robotic tasks using models learned in simulation to ground components of a simple task planner.
We show an increase in success rate from 91.6% to 98% in simulation and from 10% to 80% success rate in the real-world as compared with naive baselines.
arXiv Detail & Related papers (2020-11-17T15:24:01Z) - Solving Challenging Dexterous Manipulation Tasks With Trajectory
Optimisation and Reinforcement Learning [14.315501760755609]
Training agents to autonomously learn how to use anthropomorphic robotic hands has the potential to lead to systems capable of performing a multitude of complex manipulation tasks.
We first introduce a suite of challenging simulated manipulation tasks that current reinforcement learning and trajectory optimisation techniques find difficult.
We then introduce a simple trajectory optimisation that performs significantly better than existing methods on these environments.
arXiv Detail & Related papers (2020-09-09T13:49:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.