PinnerSage: Multi-Modal User Embedding Framework for Recommendations at
Pinterest
- URL: http://arxiv.org/abs/2007.03634v1
- Date: Tue, 7 Jul 2020 17:13:20 GMT
- Title: PinnerSage: Multi-Modal User Embedding Framework for Recommendations at
Pinterest
- Authors: Aditya Pal, Chantat Eksombatchai, Yitong Zhou, Bo Zhao, Charles
Rosenberg, Jure Leskovec
- Abstract summary: PinnerSage is an end-to-end recommender system that represents each user via multi-modal embeddings.
We conduct several offline and online A/B experiments to show that our method significantly outperforms single embedding methods.
- Score: 54.56236567783225
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Latent user representations are widely adopted in the tech industry for
powering personalized recommender systems. Most prior work infers a single high
dimensional embedding to represent a user, which is a good starting point but
falls short in delivering a full understanding of the user's interests. In this
work, we introduce PinnerSage, an end-to-end recommender system that represents
each user via multi-modal embeddings and leverages this rich representation of
users to provides high quality personalized recommendations. PinnerSage
achieves this by clustering users' actions into conceptually coherent clusters
with the help of a hierarchical clustering method (Ward) and summarizes the
clusters via representative pins (Medoids) for efficiency and interpretability.
PinnerSage is deployed in production at Pinterest and we outline the several
design decisions that makes it run seamlessly at a very large scale. We conduct
several offline and online A/B experiments to show that our method
significantly outperforms single embedding methods.
Related papers
- Retrieval Augmentation via User Interest Clustering [57.63883506013693]
Industrial recommender systems are sensitive to the patterns of user-item engagement.
We propose a novel approach that efficiently constructs user interest and facilitates low computational cost inference.
Our approach has been deployed in multiple products at Meta, facilitating short-form video related recommendation.
arXiv Detail & Related papers (2024-08-07T16:35:10Z) - How to Diversify any Personalized Recommender? A User-centric Pre-processing approach [0.0]
We introduce a novel approach to improve the diversity of Top-N recommendations while maintaining recommendation performance.
Our approach employs a user-centric pre-processing strategy aimed at exposing users to a wide array of content categories and topics.
arXiv Detail & Related papers (2024-05-03T15:02:55Z) - A Model-based Multi-Agent Personalized Short-Video Recommender System [19.03089585214444]
We propose a RL-based industrial short-video recommender ranking framework.
Our proposed framework adopts a model-based learning approach to alleviate the sample selection bias.
Our proposed approach has been deployed in our real large-scale short-video sharing platform.
arXiv Detail & Related papers (2024-05-03T04:34:36Z) - PLIERS: a Popularity-Based Recommender System for Content Dissemination
in Online Social Networks [5.505634045241288]
We propose a novel tag-based recommender system called PLIERS.
It relies on the assumption that users are mainly interested in items and tags with similar popularity to those they already own.
PLIERS is aimed at reaching a good tradeoff between algorithmic and the level of personalization of recommended items.
arXiv Detail & Related papers (2023-07-06T09:04:58Z) - The Minority Matters: A Diversity-Promoting Collaborative Metric
Learning Algorithm [154.47590401735323]
Collaborative Metric Learning (CML) has recently emerged as a popular method in recommendation systems.
This paper focuses on a challenging scenario where a user has multiple categories of interests.
We propose a novel method called textitDiversity-Promoting Collaborative Metric Learning (DPCML)
arXiv Detail & Related papers (2022-09-30T08:02:18Z) - PARSRec: Explainable Personalized Attention-fused Recurrent Sequential
Recommendation Using Session Partial Actions [0.5801044612920815]
We propose an architecture that relies on common patterns as well as individual behaviors to tailor its recommendations for each person.
Our empirical results on Nielsen Consumer Panel dataset indicate that the proposed approach achieves up to 27.9% performance improvement.
arXiv Detail & Related papers (2022-09-16T12:07:43Z) - Ordinal Graph Gamma Belief Network for Social Recommender Systems [54.9487910312535]
We develop a hierarchical Bayesian model termed ordinal graph factor analysis (OGFA), which jointly models user-item and user-user interactions.
OGFA not only achieves good recommendation performance, but also extracts interpretable latent factors corresponding to representative user preferences.
We extend OGFA to ordinal graph gamma belief network, which is a multi-stochastic-layer deep probabilistic model.
arXiv Detail & Related papers (2022-09-12T09:19:22Z) - Everyone's Preference Changes Differently: Weighted Multi-Interest
Retrieval Model [18.109035867113217]
Multi-Interest Preference (MIP) model is an approach that produces multi-interest for users by using the user's sequential engagement more effectively.
Extensive experiments have been done on various industrial-scale datasets to demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2022-07-14T04:29:54Z) - Sparse-Interest Network for Sequential Recommendation [78.83064567614656]
We propose a novel textbfSparse textbfInterest textbfNEtwork (SINE) for sequential recommendation.
Our sparse-interest module can adaptively infer a sparse set of concepts for each user from the large concept pool.
SINE can achieve substantial improvement over state-of-the-art methods.
arXiv Detail & Related papers (2021-02-18T11:03:48Z) - Controllable Multi-Interest Framework for Recommendation [64.30030600415654]
We formalize the recommender system as a sequential recommendation problem.
We propose a novel controllable multi-interest framework for the sequential recommendation, called ComiRec.
Our framework has been successfully deployed on the offline Alibaba distributed cloud platform.
arXiv Detail & Related papers (2020-05-19T10:18:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.