How to Diversify any Personalized Recommender? A User-centric Pre-processing approach
- URL: http://arxiv.org/abs/2405.02156v1
- Date: Fri, 03 May 2024 15:02:55 GMT
- Title: How to Diversify any Personalized Recommender? A User-centric Pre-processing approach
- Authors: Manel Slokom, Laura Hollink,
- Abstract summary: We introduce a novel approach to improve the diversity of Top-N recommendations while maintaining recommendation performance.
Our approach employs a user-centric pre-processing strategy aimed at exposing users to a wide array of content categories and topics.
- Score: 0.0
- License:
- Abstract: In this paper, we introduce a novel approach to improve the diversity of Top-N recommendations while maintaining recommendation performance. Our approach employs a user-centric pre-processing strategy aimed at exposing users to a wide array of content categories and topics. We personalize this strategy by selectively adding and removing a percentage of interactions from user profiles. This personalization ensures we remain closely aligned with user preferences while gradually introducing distribution shifts. Our pre-processing technique offers flexibility and can seamlessly integrate into any recommender architecture. To evaluate our approach, we run extensive experiments on two publicly available data sets for news and book recommendations. We test various standard and neural network-based recommender system algorithms. Our results show that our approach generates diverse recommendations, ensuring users are exposed to a wider range of items. Furthermore, leveraging pre-processed data for training leads to recommender systems achieving performance levels comparable to, and in some cases, better than those trained on original, unmodified data. Additionally, our approach promotes provider fairness by facilitating exposure to minority or niche categories.
Related papers
- Context-aware adaptive personalised recommendation: a meta-hybrid [0.41436032949434404]
We propose a meta-hybrid recommender that uses machine learning to predict an optimal algorithm.
Based on the proposed model, it is possible to predict which recommender will provide the most precise recommendations to a user.
arXiv Detail & Related papers (2024-10-17T09:24:40Z) - Quantifying User Coherence: A Unified Framework for Cross-Domain Recommendation Analysis [69.37718774071793]
This paper introduces novel information-theoretic measures for understanding recommender systems.
We evaluate 7 recommendation algorithms across 9 datasets, revealing the relationships between our measures and standard performance metrics.
arXiv Detail & Related papers (2024-10-03T13:02:07Z) - Relevance meets Diversity: A User-Centric Framework for Knowledge Exploration through Recommendations [15.143224593682012]
We propose a novel recommendation strategy that combines relevance and diversity by a copula function.
We use diversity as a surrogate of the amount of knowledge obtained by the user while interacting with the system.
Our strategy outperforms several state-of-the-art competitors.
arXiv Detail & Related papers (2024-08-07T13:48:24Z) - Personalized Multi-task Training for Recommender System [80.23030752707916]
PMTRec is the first personalized multi-task learning algorithm to obtain comprehensive user/item embeddings from various information sources.
Our contributions open new avenues for advancing personalized multi-task training in recommender systems.
arXiv Detail & Related papers (2024-07-31T06:27:06Z) - Fisher-Weighted Merge of Contrastive Learning Models in Sequential
Recommendation [0.0]
We are the first to apply the Fisher-Merging method to Sequential Recommendation, addressing and resolving practical challenges associated with it.
We demonstrate the effectiveness of our proposed methods, highlighting their potential to advance the state-of-the-art in sequential learning and recommendation systems.
arXiv Detail & Related papers (2023-07-05T05:58:56Z) - Editable User Profiles for Controllable Text Recommendation [66.00743968792275]
We propose LACE, a novel concept value bottleneck model for controllable text recommendations.
LACE represents each user with a succinct set of human-readable concepts.
It learns personalized representations of the concepts based on user documents.
arXiv Detail & Related papers (2023-04-09T14:52:18Z) - A Review on Pushing the Limits of Baseline Recommendation Systems with
the integration of Opinion Mining & Information Retrieval Techniques [0.0]
Recommendation Systems allow users to identify trending items among a community while being timely and relevant to the user's expectations.
Deep Learning methods have been brought forward to achieve better quality recommendations.
Researchers have tried to expand on the capabilities of standard recommendation systems to provide the most effective recommendations.
arXiv Detail & Related papers (2022-05-03T22:13:33Z) - PURS: Personalized Unexpected Recommender System for Improving User
Satisfaction [76.98616102965023]
We describe a novel Personalized Unexpected Recommender System (PURS) model that incorporates unexpectedness into the recommendation process.
Extensive offline experiments on three real-world datasets illustrate that the proposed PURS model significantly outperforms the state-of-the-art baseline approaches.
arXiv Detail & Related papers (2021-06-05T01:33:21Z) - Random Walks with Erasure: Diversifying Personalized Recommendations on
Social and Information Networks [4.007832851105161]
We develop a novel recommendation framework with a goal of improving information diversity using a modified random walk exploration of the user-item graph.
For recommending political content on social networks, we first propose a new model to estimate the ideological positions for both users and the content they share.
Based on these estimated positions, we generate diversified personalized recommendations using our new random-walk based recommendation algorithm.
arXiv Detail & Related papers (2021-02-18T21:53:32Z) - PinnerSage: Multi-Modal User Embedding Framework for Recommendations at
Pinterest [54.56236567783225]
PinnerSage is an end-to-end recommender system that represents each user via multi-modal embeddings.
We conduct several offline and online A/B experiments to show that our method significantly outperforms single embedding methods.
arXiv Detail & Related papers (2020-07-07T17:13:20Z) - Reward Constrained Interactive Recommendation with Natural Language
Feedback [158.8095688415973]
We propose a novel constraint-augmented reinforcement learning (RL) framework to efficiently incorporate user preferences over time.
Specifically, we leverage a discriminator to detect recommendations violating user historical preference.
Our proposed framework is general and is further extended to the task of constrained text generation.
arXiv Detail & Related papers (2020-05-04T16:23:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.