PLIERS: a Popularity-Based Recommender System for Content Dissemination
in Online Social Networks
- URL: http://arxiv.org/abs/2307.02865v1
- Date: Thu, 6 Jul 2023 09:04:58 GMT
- Title: PLIERS: a Popularity-Based Recommender System for Content Dissemination
in Online Social Networks
- Authors: Valerio Arnaboldi, Mattia Giovanni Campana, Franca Delmastro, Elena
Pagani
- Abstract summary: We propose a novel tag-based recommender system called PLIERS.
It relies on the assumption that users are mainly interested in items and tags with similar popularity to those they already own.
PLIERS is aimed at reaching a good tradeoff between algorithmic and the level of personalization of recommended items.
- Score: 5.505634045241288
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a novel tag-based recommender system called PLIERS,
which relies on the assumption that users are mainly interested in items and
tags with similar popularity to those they already own. PLIERS is aimed at
reaching a good tradeoff between algorithmic complexity and the level of
personalization of recommended items. To evaluate PLIERS, we performed a set of
experiments on real OSN datasets, demonstrating that it outperforms
state-of-the-art solutions in terms of personalization, relevance, and novelty
of recommendations.
Related papers
- The MovieLens Beliefs Dataset: Collecting Pre-Choice Data for Online Recommender Systems [0.0]
This paper introduces a method for collecting user beliefs about unexperienced items - a critical predictor of choice behavior.
We implement this method on the MovieLens platform, resulting in a rich dataset that combines user ratings, beliefs, and observed recommendations.
arXiv Detail & Related papers (2024-05-17T19:06:06Z) - How to Surprisingly Consider Recommendations? A Knowledge-Graph-based Approach Relying on Complex Network Metrics [0.2537383030441368]
We propose a Knowledge Graph based recommender system by encoding user interactions on item catalogs.
Our study explores whether network-level metrics on KGs can influence the degree of surprise in recommendations.
We experimentally evaluate our approach on two datasets of LastFM listening histories and synthetic Netflix viewing profiles.
arXiv Detail & Related papers (2024-05-14T09:38:44Z) - Review-based Recommender Systems: A Survey of Approaches, Challenges and Future Perspectives [11.835903510784735]
Review-based recommender systems have emerged as a significant sub-field in this domain.
We present a categorization of these systems and summarize the state-of-the-art methods, analyzing their unique features, effectiveness, and limitations.
We propose potential directions for future research, including the integration of multimodal data, multi-criteria rating information, and ethical considerations.
arXiv Detail & Related papers (2024-05-09T05:45:18Z) - How to Diversify any Personalized Recommender? A User-centric Pre-processing approach [0.0]
We introduce a novel approach to improve the diversity of Top-N recommendations while maintaining recommendation performance.
Our approach employs a user-centric pre-processing strategy aimed at exposing users to a wide array of content categories and topics.
arXiv Detail & Related papers (2024-05-03T15:02:55Z) - Impression-Aware Recommender Systems [57.38537491535016]
Novel data sources bring new opportunities to improve the quality of recommender systems.
Researchers may use impressions to refine user preferences and overcome the current limitations in recommender systems research.
We present a systematic literature review on recommender systems using impressions.
arXiv Detail & Related papers (2023-08-15T16:16:02Z) - FedGRec: Federated Graph Recommender System with Lazy Update of Latent
Embeddings [108.77460689459247]
We propose a Federated Graph Recommender System (FedGRec) to mitigate privacy concerns.
In our system, users and the server explicitly store latent embeddings for users and items, where the latent embeddings summarize different orders of indirect user-item interactions.
We perform extensive empirical evaluations to verify the efficacy of using latent embeddings as a proxy of missing interaction graph.
arXiv Detail & Related papers (2022-10-25T01:08:20Z) - A Review on Pushing the Limits of Baseline Recommendation Systems with
the integration of Opinion Mining & Information Retrieval Techniques [0.0]
Recommendation Systems allow users to identify trending items among a community while being timely and relevant to the user's expectations.
Deep Learning methods have been brought forward to achieve better quality recommendations.
Researchers have tried to expand on the capabilities of standard recommendation systems to provide the most effective recommendations.
arXiv Detail & Related papers (2022-05-03T22:13:33Z) - FEBR: Expert-Based Recommendation Framework for beneficial and
personalized content [77.86290991564829]
We propose FEBR (Expert-Based Recommendation Framework), an apprenticeship learning framework to assess the quality of the recommended content.
The framework exploits the demonstrated trajectories of an expert (assumed to be reliable) in a recommendation evaluation environment, to recover an unknown utility function.
We evaluate the performance of our solution through a user interest simulation environment (using RecSim)
arXiv Detail & Related papers (2021-07-17T18:21:31Z) - PinnerSage: Multi-Modal User Embedding Framework for Recommendations at
Pinterest [54.56236567783225]
PinnerSage is an end-to-end recommender system that represents each user via multi-modal embeddings.
We conduct several offline and online A/B experiments to show that our method significantly outperforms single embedding methods.
arXiv Detail & Related papers (2020-07-07T17:13:20Z) - Reward Constrained Interactive Recommendation with Natural Language
Feedback [158.8095688415973]
We propose a novel constraint-augmented reinforcement learning (RL) framework to efficiently incorporate user preferences over time.
Specifically, we leverage a discriminator to detect recommendations violating user historical preference.
Our proposed framework is general and is further extended to the task of constrained text generation.
arXiv Detail & Related papers (2020-05-04T16:23:34Z) - Sequential Recommender Systems: Challenges, Progress and Prospects [50.12218578518894]
sequential recommender systems (SRSs) try to understand and model the sequential user behaviors, the interactions between users and items, and the evolution of users preferences and item popularity over time.
We first present the characteristics of SRSs, then summarize and categorize the key challenges in this research area, followed by the corresponding research progress consisting of the most recent and representative developments on this topic.
arXiv Detail & Related papers (2019-12-28T05:12:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.