Skin effect and winding number in disordered non-Hermitian systems
- URL: http://arxiv.org/abs/2007.03738v2
- Date: Thu, 27 Aug 2020 12:55:24 GMT
- Title: Skin effect and winding number in disordered non-Hermitian systems
- Authors: Jahan Claes and Taylor L. Hughes
- Abstract summary: We extend the definition of the winding number to disordered NH systems.
We verify that our real-space formula still predicts the NH skin effect in strongly disordered NH systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unlike their Hermitian counterparts, non-Hermitian (NH) systems may display
an exponential sensitivity to boundary conditions and an extensive number of
edge-localized states in systems with open boundaries, a phenomena dubbed the
"non-Hermitian skin effect." The NH skin effect is one of the primary
challenges to defining a topological theory of NH Hamiltonians, as the
sensitivity to boundary conditions invalidates the traditional bulk-boundary
correspondence. The NH skin effect has recently been connected to the winding
number, a topological invariant unique to NH systems. In this paper, we extend
the definition of the winding number to disordered NH systems by generalizing
established results on disordered Hermitian topological insulators. Our
real-space winding number is self-averaging, continuous as a function of the
parameters in the problem, and remains quantized even in the presence of strong
disorder. We verify that our real-space formula still predicts the NH skin
effect, allowing for the possibility of predicting and observing the NH skin
effect in strongly disordered NH systems. As an application we apply our
results to predict a NH Anderson skin effect where a skin effect is developed
as disorder is added to a clean system, and to explain recent results in
optical funnels.
Related papers
- The non-Hermitian skin effect: A perspective [4.374427560393137]
The non-Hermitian (NH) skin effect is a truly NH feature, which manifests itself as an accumulation of states, known as skin states, on the boundaries of a system.
Non-normality and non-reciprocity are reviewed as necessary requirements to see the NH skin effect.
arXiv Detail & Related papers (2024-10-31T11:51:15Z) - Anomalous symmetry protected blockade of skin effect in one-dimensional non-Hermitian lattice systems [20.4728241808175]
We present a theorem which shows that the combined spatial reflection symmetry can be considered as a criterion in one-dimensional non-Hermitian systems.
Our results reveal a profound connection between the symmetry and the fate of NHSE.
arXiv Detail & Related papers (2024-07-29T07:57:59Z) - Confidence Regulation Neurons in Language Models [91.90337752432075]
This study investigates the mechanisms by which large language models represent and regulate uncertainty in next-token predictions.
Entropy neurons are characterized by an unusually high weight norm and influence the final layer normalization (LayerNorm) scale to effectively scale down the logits.
token frequency neurons, which we describe here for the first time, boost or suppress each token's logit proportionally to its log frequency, thereby shifting the output distribution towards or away from the unigram distribution.
arXiv Detail & Related papers (2024-06-24T01:31:03Z) - Dynamical suppression of many-body non-Hermitian skin effect in Anyonic systems [3.072340427031969]
The non-Hermitian skin effect (NHSE) is a fascinating phenomenon in nonequilibrium systems where eigenstates massively localize at the systems' boundaries.
Our results open up a new avenue on exploring novel non-Hermitian phenomena from the interplay between NHSE and anyonic statistics.
arXiv Detail & Related papers (2024-05-20T18:00:12Z) - Exploring Hilbert-Space Fragmentation on a Superconducting Processor [23.39066473461786]
Isolated interacting quantum systems generally thermalize, yet there are several counterexamples for the breakdown of ergodicity.
Recently, ergodicity breaking has been observed in systems subjected to linear potentials, termed Stark many-body localization.
Here, we experimentally explore initial-state dependent dynamics using a ladder-type superconducting processor with up to 24 qubits.
arXiv Detail & Related papers (2024-03-14T04:39:14Z) - Observation of topology transition in Floquet non-Hermitian skin effects
in silicon photonics [19.744996310272178]
We realize the Floquet NHSE in periodically modulated optical waveguides integrated on a silicon photonics platform.
Remarkably, we discover the transitions between the normal unipolar NHSEs and an unconventional bipolar NHSE.
Our work unfolds a new route toward Floquet NHSEs originating from the interplay between gauge fields and dissipation effects.
arXiv Detail & Related papers (2024-02-15T04:29:29Z) - Disorder-Induced Entanglement Phase Transitions in Non-Hermitian Systems
with Skin Effects [20.88126933913389]
We study the dynamics of a many-body state of free fermions in the paradigmatic Hatano-Nelson model with open boundaries.
We find that the area-law behavior of the entanglement entropy in the pristine Hatano-Nelson model develops into a logarithmic scaling for small disorder strength.
arXiv Detail & Related papers (2023-05-21T04:34:05Z) - Correlation-Induced Sensitivity and Non-Hermitian Skin Effect of
Quasiparticles [0.0]
Non-Hermitian (NH) Hamiltonians have been shown to exhibit unique signatures, including the NH skin effect and an exponential spectral sensitivity with respect to boundary conditions.
Here, we investigate as to what extent these remarkable phenomena, recently predicted and observed in a broad range of settings, may also occur in closed correlated fermionic systems governed by a Hermitian many-body Hamiltonian.
arXiv Detail & Related papers (2023-01-31T19:00:06Z) - Manipulating non-Hermitian skin effect via electric fields [2.547311585168061]
In non-Hermitian systems, the phenomenon that the bulk-band eigenstates are accumulated at the boundaries of the systems is called non-Hermitian skin effect (NHSE)
We show abundant manipulation effects of dc and ac fields on NHSE, and that the physical mechanism behind these effects is the interplay between the Stark localization, dynamic localization and NHSE.
arXiv Detail & Related papers (2022-01-25T13:43:45Z) - Non-Hermitian dislocation modes: Stability and melting across
exceptional points [0.0]
dislocation lattice defects support robust topological modes in the bulk of a non-Hermitian (NH) system.
We explicitly demonstrate these findings for a two-dimensional NH Chern insulator, thereby establishing that dislocation lattice defects can be instrumental to experimentally probe pristine NH topology.
arXiv Detail & Related papers (2021-05-11T17:59:33Z) - Quantitative Propagation of Chaos for SGD in Wide Neural Networks [39.35545193410871]
In this paper, we investigate the limiting behavior of a continuous-time counterpart of the Gradient Descent (SGD)
We show 'propagation of chaos' for the particle system defined by this continuous-time dynamics under different scenarios.
We identify two under which different mean-field limits are obtained, one of them corresponding to an implicitly regularized version of the minimization problem at hand.
arXiv Detail & Related papers (2020-07-13T12:55:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.