Correlation-Induced Sensitivity and Non-Hermitian Skin Effect of
Quasiparticles
- URL: http://arxiv.org/abs/2302.00019v2
- Date: Wed, 27 Dec 2023 15:41:35 GMT
- Title: Correlation-Induced Sensitivity and Non-Hermitian Skin Effect of
Quasiparticles
- Authors: Tommaso Micallo, Carl Lehmann, Jan Carl Budich
- Abstract summary: Non-Hermitian (NH) Hamiltonians have been shown to exhibit unique signatures, including the NH skin effect and an exponential spectral sensitivity with respect to boundary conditions.
Here, we investigate as to what extent these remarkable phenomena, recently predicted and observed in a broad range of settings, may also occur in closed correlated fermionic systems governed by a Hermitian many-body Hamiltonian.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-Hermitian (NH) Hamiltonians have been shown to exhibit unique signatures,
including the NH skin effect and an exponential spectral sensitivity with
respect to boundary conditions. Here, we investigate as to what extent these
remarkable phenomena, recently predicted and observed in a broad range of
settings, may also occur in closed correlated fermionic systems that are
governed by a Hermitian many-body Hamiltonian. There, an effectively NH
quasiparticle description naturally arises in the Green's function formalism
due to inter-particle scattering that represents an inherent source of
dissipation. As a concrete platform we construct an extended interacting
Su-Schrieffer-Heeger (SSH) model subject to varying boundary conditions, which
we analyze using exact diagonalization and non-equilibrium Green's function
methods. That way, we clearly identify the presence of the aforementioned NH
phenomena in the quasi-particle properties of this Hermitian model system.
Related papers
- Fragile non-Bloch spectrum and unconventional Green's function [9.924017206241272]
In non-Hermitian systems, energy spectrum and eigenstates can be totally different under open or periodic boundary conditions.
We show that a wide range of non-Hermitian models with NHSE can even be highly sensitive to local perturbation under open boundary conditions.
arXiv Detail & Related papers (2024-10-30T16:34:34Z) - Measurement-induced transitions for interacting fermions [43.04146484262759]
We develop a field-theoretical framework that provides a unified approach to observables characterizing entanglement and charge fluctuations.
Within this framework, we derive a replicated Keldysh non-linear sigma model (NLSM)
By using the renormalization-group approach for the NLSM, we determine the phase diagram and the scaling of physical observables.
arXiv Detail & Related papers (2024-10-09T18:00:08Z) - Stability and decay of subradiant patterns in a quantum gas with photon-mediated interactions [34.82692226532414]
We study subradiance in a Bose-Einstein condensate positioned at the mode crossing of two optical cavities.
metastable density structures that suppress emission into one cavity mode prevent relaxation to the stationary, superradiant grating.
We reproduce these dynamics by a quantum mean field model, suggesting that subradiance shares characteristics with quasi-stationary states predicted in other long-range interacting systems.
arXiv Detail & Related papers (2024-07-12T12:47:07Z) - Emergent non-Hermitian models [0.0]
We use recently developed graph-theoretical tools to design non-Hermitian systems with non-trivial boundary phenomena.
We show that eigenstates can simultaneously localize on either ends of the systems, with different localization lengths.
We also predict the existence of various topological edge states, pinned at non-zero energies, with different exponential envelopes, depending on their energy.
arXiv Detail & Related papers (2023-10-18T14:19:58Z) - Non-Hermitian skin effect and self-acceleration [0.0]
Non-Hermitian systems exhibit nontrivial band topology and a strong sensitivity of the energy spectrum on the boundary conditions.
A macroscopic number of bulk states get squeezed toward the lattice edges under open boundary conditions, an effect dubbed the non-Hermitian skin effect (NHSE)
Here we unravel a different dynamical signature of the NHSE in real space that manifests itself in the em early-time dynamics of the system, namely self-acceleration of the wave function.
arXiv Detail & Related papers (2022-06-22T04:29:08Z) - Observation of Non-Hermitian Skin Effect and Topology in Ultracold Atoms [7.71285795527128]
The non-Hermitian skin effect (NHSE) underlies a variety of exotic properties that defy conventional wisdom.
NHSE and its intriguing impact on band topology and dynamics have been observed in classical or photonic systems.
We report the experimental realization of a dissipative Aharonov-Bohm chain in the momentum space of a two-component Bose-Einstein condensate.
arXiv Detail & Related papers (2022-01-24T06:28:02Z) - Bridging the gap between topological non-Hermitian physics and open
quantum systems [62.997667081978825]
We show how to detect a transition between different topological phases by measuring the response to local perturbations.
Our formalism is exemplified in a 1D Hatano-Nelson model, highlighting the difference between the bosonic and fermionic cases.
arXiv Detail & Related papers (2021-09-22T18:00:17Z) - Boundary Condition Independence of Non-Hermitian Hamiltonian Dynamics [7.660448224829509]
We study the evolution of wave-packets in non-Hermitian systems.
Surprisingly, we find that in the thermodynamical limit, the Green's function does not depend on boundary conditions.
arXiv Detail & Related papers (2021-04-20T11:12:03Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.