A Quantum Finite Automata Approach to Modeling the Chemical Reactions
- URL: http://arxiv.org/abs/2007.03976v1
- Date: Wed, 8 Jul 2020 09:15:33 GMT
- Title: A Quantum Finite Automata Approach to Modeling the Chemical Reactions
- Authors: Amandeep Singh Bhatia, Shenggen Zheng
- Abstract summary: The study of chemical information processing with quantum computational models is a natural goal.
We have modeled chemical reactions using two-way quantum finite automata, which are halted in linear time.
It has been proven that computational versatility can be increased by combining chemical accept/reject signatures and quantum automata models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, the modeling interest has increased significantly from the
molecular level to the atomic and quantum scale. The field of computational
chemistry plays a significant role in designing computational models for the
operation and simulation of systems ranging from atoms and molecules to
industrial-scale processes. It is influenced by a tremendous increase in
computing power and the efficiency of algorithms. The representation of
chemical reactions using classical automata theory in thermodynamic terms had a
great influence on computer science. The study of chemical information
processing with quantum computational models is a natural goal. In this paper,
we have modeled chemical reactions using two-way quantum finite automata, which
are halted in linear time. Additionally, classical pushdown automata can be
designed for such chemical reactions with multiple stacks. It has been proven
that computational versatility can be increased by combining chemical
accept/reject signatures and quantum automata models.
Related papers
- Generating High-Precision Force Fields for Molecular Dynamics Simulations to Study Chemical Reaction Mechanisms using Molecular Configuration Transformer [8.267664135065903]
We present a scheme for training high-precision force fields for molecular modeling using a previously developed graph-neural-network-based molecular model.
This potential energy function allows for highly accurate simulations at a low computational cost, leading to more precise calculations of the mechanism of chemical reactions.
arXiv Detail & Related papers (2023-12-31T13:43:41Z) - QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules [69.25826391912368]
We generate a new Quantum Hamiltonian dataset, named as QH9, to provide precise Hamiltonian matrices for 999 or 2998 molecular dynamics trajectories.
We show that current machine learning models have the capacity to predict Hamiltonian matrices for arbitrary molecules.
arXiv Detail & Related papers (2023-06-15T23:39:07Z) - Modeling Non-Covalent Interatomic Interactions on a Photonic Quantum
Computer [50.24983453990065]
We show that the cQDO model lends itself naturally to simulation on a photonic quantum computer.
We calculate the binding energy curve of diatomic systems by leveraging Xanadu's Strawberry Fields photonics library.
Remarkably, we find that two coupled bosonic QDOs exhibit a stable bond.
arXiv Detail & Related papers (2023-06-14T14:44:12Z) - Simulation of chemical reaction dynamics based on quantum computing [1.9441762996158096]
We develop the ab initio molecular dynamics based on quantum computing to simulate reaction dynamics.
We use this approach to calculate Hessian matrix and evaluate resources.
Our results suggest that it is reliable to characterize the molecular structure, property, and reactivity.
arXiv Detail & Related papers (2023-03-15T12:49:10Z) - A Quantum-Classical Model of Brain Dynamics [62.997667081978825]
Mixed Weyl symbol is used to describe brain processes at the microscopic level.
Electromagnetic fields and phonon modes involved in the processes are treated either classically or semi-classically.
Zero-point quantum effects can be incorporated into numerical simulations by controlling the temperature of each field mode.
arXiv Detail & Related papers (2023-01-17T15:16:21Z) - A modular quantum-classical framework for simulating chemical reaction
pathways accurately [0.0]
We present a modular quantum-classical hybrid framework to accurately simulate chemical reaction pathway.
We demonstrate our framework by accurately tracing the isomerization pathway for small organic molecules.
This framework can now be readily applied to study other 'active' molecules from the pharma and chemical industries.
arXiv Detail & Related papers (2022-10-17T10:41:53Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - What the foundations of quantum computer science teach us about
chemistry [1.956896529646609]
Even before full scale quantum computers are available, quantum computer science has exhibited a remarkable string of results.
We take the position that direct chemical simulation is best understood as a digital experiment.
We argue that this perspective is not defeatist, but rather helps shed light on the success of existing chemical models.
arXiv Detail & Related papers (2021-06-07T22:40:11Z) - Simulating Energy Transfer in Molecular Systems with Digital Quantum
Computers [8.271013526496906]
Quantum computers have the potential to simulate chemical systems beyond the capability of classical computers.
We extend near-term quantum simulations of chemistry to time-dependent processes by simulating energy transfer in organic semiconducting molecules.
Our approach opens up new opportunities for modeling quantum dynamics in chemical, biological and material systems with quantum computers.
arXiv Detail & Related papers (2021-01-18T05:08:05Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
We benchmark the working conditions of the numerically analog simulator and find less demanding experimental setups.
We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects.
arXiv Detail & Related papers (2020-11-28T11:23:06Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.