Generating High-Precision Force Fields for Molecular Dynamics Simulations to Study Chemical Reaction Mechanisms using Molecular Configuration Transformer
- URL: http://arxiv.org/abs/2401.00499v3
- Date: Thu, 11 Apr 2024 17:15:43 GMT
- Title: Generating High-Precision Force Fields for Molecular Dynamics Simulations to Study Chemical Reaction Mechanisms using Molecular Configuration Transformer
- Authors: Sihao Yuan, Xu Han, Jun Zhang, Zhaoxin Xie, Cheng Fan, Yunlong Xiao, Yi Qin Gao, Yi Isaac Yang,
- Abstract summary: We present a scheme for training high-precision force fields for molecular modeling using a previously developed graph-neural-network-based molecular model.
This potential energy function allows for highly accurate simulations at a low computational cost, leading to more precise calculations of the mechanism of chemical reactions.
- Score: 8.267664135065903
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Theoretical studies on chemical reaction mechanisms have been crucial in organic chemistry. Traditionally, calculating the manually constructed molecular conformations of transition states for chemical reactions using quantum chemical calculations is the most commonly used method. However, this way is heavily dependent on individual experience and chemical intuition. In our previous study, we proposed a research paradigm that uses enhanced sampling in molecular dynamics simulations to study chemical reactions. This approach can directly simulate the entire process of a chemical reaction. However, the computational speed limits the use of high-precision potential energy functions for simulations. To address this issue, we present a scheme for training high-precision force fields for molecular modeling using a previously developed graph-neural-network-based molecular model, molecular configuration transformer. This potential energy function allows for highly accurate simulations at a low computational cost, leading to more precise calculations of the mechanism of chemical reactions. We applied this approach to study a Claisen rearrangement reaction and a Carbonyl insertion reaction catalyzed by Manganese.
Related papers
- BatGPT-Chem: A Foundation Large Model For Retrosynthesis Prediction [65.93303145891628]
BatGPT-Chem is a large language model with 15 billion parameters, tailored for enhanced retrosynthesis prediction.
Our model captures a broad spectrum of chemical knowledge, enabling precise prediction of reaction conditions.
This development empowers chemists to adeptly address novel compounds, potentially expediting the innovation cycle in drug manufacturing and materials science.
arXiv Detail & Related papers (2024-08-19T05:17:40Z) - Machine Learning for Polaritonic Chemistry: Accessing chemical kinetics [0.0]
We establish a framework based on a combination of machine learning (ML) models, trained using density-functional theory calculations, and molecular dynamics.
We evaluate strong coupling, changes in reaction rate constant, and their influence on enthalpy and entropy for the deprotection reaction of 1-phenyl-2-trimethylsilylacetylene.
While we find qualitative agreement with critical experimental observations, especially with regard to the changes in kinetics, we also find differences in comparison with previous theoretical predictions.
arXiv Detail & Related papers (2023-11-16T10:08:44Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
We introduce a novel deep learning framework, called Distributional Graphormer (DiG), in an attempt to predict the equilibrium distribution of molecular systems.
DiG employs deep neural networks to transform a simple distribution towards the equilibrium distribution, conditioned on a descriptor of a molecular system.
arXiv Detail & Related papers (2023-06-08T17:12:08Z) - Simulation of chemical reaction dynamics based on quantum computing [1.9441762996158096]
We develop the ab initio molecular dynamics based on quantum computing to simulate reaction dynamics.
We use this approach to calculate Hessian matrix and evaluate resources.
Our results suggest that it is reliable to characterize the molecular structure, property, and reactivity.
arXiv Detail & Related papers (2023-03-15T12:49:10Z) - A modular quantum-classical framework for simulating chemical reaction
pathways accurately [0.0]
We present a modular quantum-classical hybrid framework to accurately simulate chemical reaction pathway.
We demonstrate our framework by accurately tracing the isomerization pathway for small organic molecules.
This framework can now be readily applied to study other 'active' molecules from the pharma and chemical industries.
arXiv Detail & Related papers (2022-10-17T10:41:53Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes.
Recently, machine learned force fields (MLFFs) emerged as an alternative means to execute MD simulations.
This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations.
arXiv Detail & Related papers (2022-05-17T13:08:28Z) - Chemical-Reaction-Aware Molecule Representation Learning [88.79052749877334]
We propose using chemical reactions to assist learning molecule representation.
Our approach is proven effective to 1) keep the embedding space well-organized and 2) improve the generalization ability of molecule embeddings.
Experimental results demonstrate that our method achieves state-of-the-art performance in a variety of downstream tasks.
arXiv Detail & Related papers (2021-09-21T00:08:43Z) - Non-Autoregressive Electron Redistribution Modeling for Reaction
Prediction [26.007965383304864]
We devise a non-autoregressive learning paradigm that predicts reaction in one shot.
We formulate a reaction as an arbitrary electron flow and predict it with a novel multi-pointer decoding network.
Experiments on the USPTO-MIT dataset show that our approach has established a new state-of-the-art top-1 accuracy.
arXiv Detail & Related papers (2021-06-08T16:39:08Z) - Molecular spin qudits for quantum simulation of light-matter
interactions [62.223544431366896]
We show that molecular spin qudits provide an ideal platform to simulate the quantum dynamics of photon fields strongly interacting with matter.
The basic unit of the proposed molecular quantum simulator can be realized by a simple dimer of a spin 1/2 and a spin $S$ transition metal ion, solely controlled by microwave pulses.
arXiv Detail & Related papers (2021-03-17T15:03:12Z) - A Quantum Finite Automata Approach to Modeling the Chemical Reactions [0.0]
The study of chemical information processing with quantum computational models is a natural goal.
We have modeled chemical reactions using two-way quantum finite automata, which are halted in linear time.
It has been proven that computational versatility can be increased by combining chemical accept/reject signatures and quantum automata models.
arXiv Detail & Related papers (2020-07-08T09:15:33Z) - Retrosynthesis Prediction with Conditional Graph Logic Network [118.70437805407728]
Computer-aided retrosynthesis is finding renewed interest from both chemistry and computer science communities.
We propose a new approach to this task using the Conditional Graph Logic Network, a conditional graphical model built upon graph neural networks.
arXiv Detail & Related papers (2020-01-06T05:36:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.