Identifying genuine quantum teleportation
- URL: http://arxiv.org/abs/2007.04658v4
- Date: Tue, 30 Nov 2021 05:53:02 GMT
- Title: Identifying genuine quantum teleportation
- Authors: Chia-Kuo Chen, Shih-Hsuan Chen, Ni-Ni Huang, Che-Ming Li
- Abstract summary: Quantum teleportation is a method for utilizing quantum measurements to transmit an unknown quantum state.
We propose a new benchmark which reveals that not all nonclassical teleportations are truly quantum-mechanical.
We prove that EPR steering empowers genuine quantum teleportations, rather than entanglement.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum teleportation is a method for utilizing quantum measurements and the
maximally entangled Einstein-Podolsky-Rosen (EPR) pair to transmit an unknown
quantum state. It is well known that all entangled states demonstrate so-called
"nonclassical teleportation" that cannot be simulated by the seminal classical
measure-prepare strategy. Herein, we propose a new benchmark which reveals that
not all nonclassical teleportations are truly quantum-mechanical. Rather, there
exists a more robust classical-teleportation model, which includes the
measure-prepare mimicry as a special case, that can describe certain
nonclassical teleportations. Invalidating such a general classical model
indicates genuine quantum teleportation wherein both the pair state and the
measurement are truly quantum-mechanical. We prove that EPR steering empowers
genuine quantum teleportations, rather than entanglement. The new benchmark can
be readily used in practical experiments for ensuring that genuine quantum
teleportation is implemented. The results presented herein provide strict
criteria for implementing quantum-information processing where genuine quantum
teleportation is indispensable.
Related papers
- Environment-induced Transitions in Many-body Quantum Teleportation [19.646332825082478]
We study many-body quantum teleportation in the presence of environments.
In the quantum regime, teleportation can outperform its classical counterparts, while in the classical regime, it can be replaced by a classical channel.
arXiv Detail & Related papers (2024-06-04T12:51:23Z) - Quantum teleportation based on the elegant joint measurement [0.0]
We explore quantum teleportation based on the elegant joint measurement (EJM)
It is a probabilistic teleportation caused by undesired nonunitary quantum evolution.
We show in detail the feasible quantum circuits to realize the present scenario.
arXiv Detail & Related papers (2024-02-04T12:24:11Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Quantum teleportation of quantum causal structures [0.0]
We develop quantum teleportation of arbitrary quantum causal structures.
The central idea is to just teleport the inputs to and outputs from the operations of agents.
We prove that our partially post-selected teleportation protocol is compatible with all quantum causal structures.
arXiv Detail & Related papers (2022-03-01T13:29:09Z) - Catalytic quantum teleportation and beyond [0.0]
We develop a new teleportation protocol based upon the idea of using ancillary entanglement catalytically.
We show that catalytic entanglement allows for a noiseless quantum channel to be simulated with a quality that could never be achieved.
arXiv Detail & Related papers (2021-02-23T18:25:17Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Operational Resource Theory of Imaginarity [48.7576911714538]
We show that quantum states are easier to create and manipulate if they only have real elements.
As an application, we show that imaginarity plays a crucial role for state discrimination.
arXiv Detail & Related papers (2020-07-29T14:03:38Z) - Quantum Teleportation with Imperfect Quantum Dots [0.0]
Efficient all-photonic quantum teleportation requires fast and deterministic sources of highly indistinguishable and entangled photons.
We show that the average teleportation fidelity can be raised from below the classical limit to 0.842(14) using a quantum dot with sub-par entanglement and photon indistinguishability.
arXiv Detail & Related papers (2020-06-04T09:46:42Z) - Teleporting quantum information encoded in fermionic modes [62.997667081978825]
We consider teleportation of quantum information encoded in modes of a fermionic field.
In particular, one is forced to distinguish between single-mode entanglement swapping, and qubit teleportation with or without authentication.
arXiv Detail & Related papers (2020-02-19T14:15:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.