Quantum teleportation based on the elegant joint measurement
- URL: http://arxiv.org/abs/2402.02462v1
- Date: Sun, 4 Feb 2024 12:24:11 GMT
- Title: Quantum teleportation based on the elegant joint measurement
- Authors: Dong Ding, Ming-Xing Yu, Ying-Qiu He, Hao-Sen Ji, Ting Gao, Feng-Li
Yan
- Abstract summary: We explore quantum teleportation based on the elegant joint measurement (EJM)
It is a probabilistic teleportation caused by undesired nonunitary quantum evolution.
We show in detail the feasible quantum circuits to realize the present scenario.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a generalization of the well-known Bell state measurement (BSM), the
elegant joint measurement (EJM) is a kind of novel two-qubit joint measurement,
parameterized by a subtle phase factor $\theta \in [0,\pi/2]$. We explore
quantum teleportation based on the EJM, inspired by Gisin's idea that quantum
entanglement not only provides quantum channel and also quantum joint
measurement for quantum teleportation. It is a probabilistic teleportation
caused by undesired nonunitary quantum evolution. There are two interesting
features in the present scenario. First, it goes beyond the conventional
teleportation scenario, which can be included in the present scenario. Second,
different from the BSM being single input and four outcomes, it can provide an
adjustable input setting or even multiple measurement settings for the sender
(or the controller). Moreover, we show in detail the feasible quantum circuits
to realize the present scenario, where a few unitary operations and a
nonunitary quantum gate are being utilized.
Related papers
- Boosted quantum teleportation [0.0]
Quantum teleportation has proven to be fundamental for many quantum information and communication processes.
For linear-optical systems, the efficiency of teleportation is directly linked to the success probability of the involved Bell-state measurement.
Here, we demonstrate quantum teleportation surpassing this limit.
arXiv Detail & Related papers (2024-06-07T18:00:34Z) - Environment-induced Transitions in Many-body Quantum Teleportation [19.646332825082478]
We study many-body quantum teleportation in the presence of environments.
In the quantum regime, teleportation can outperform its classical counterparts, while in the classical regime, it can be replaced by a classical channel.
arXiv Detail & Related papers (2024-06-04T12:51:23Z) - A computational test of quantum contextuality, and even simpler proofs of quantumness [43.25018099464869]
We show that an arbitrary contextuality game can be compiled into an operational "test of contextuality" involving a single quantum device.
Our work can be seen as using cryptography to enforce spatial separation within subsystems of a single quantum device.
arXiv Detail & Related papers (2024-05-10T19:30:23Z) - Coupled vertical double quantum dots at single-hole occupancy [37.69303106863453]
We control vertical double quantum dots confined in a double quantum well, silicon-germanium heterostructure.
We sense individual charge transitions with a single-hole transistor.
tuning the vertical double quantum dot to the (1,1) charge state confines a single hole in each quantum well beneath a single plunger gate.
arXiv Detail & Related papers (2024-01-15T14:46:40Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Experimental realization of a three-photon asymmetric maximally
entangled state and its application to quantum teleportation [0.0]
We have experimentally prepared a special high-dimensional entangled state, the so-called three-photon asymmetric maximally entangled state.
We have also implemented a proof-of-principle quantum teleportation experiment, realizing the transfer of quantum information from two qubits to a single ququart.
arXiv Detail & Related papers (2022-12-01T14:52:16Z) - Entanglement catalysis for quantum states and noisy channels [41.94295877935867]
We investigate properties of entanglement and its role for quantum communication.
For transformations between bipartite pure states, we prove the existence of a universal catalyst.
We further develop methods to estimate the number of singlets which can be established via a noisy quantum channel.
arXiv Detail & Related papers (2022-02-10T18:36:25Z) - Perfect teleportation with a partially entangled quantum channel [4.9395337334694105]
Quantum teleportation provides a way to transfer unknown quantum states from one system to another via an entangled state as a quantum channel without physical transmission of the object itself.
The entangled channel, measurement performed by the sender (Alice), and classical information sent to the receiver (Bob) are three key ingredients in the procedure, which need to cooperate with each other.
We propose a scheme for perfect teleportation of a qubit through a high-dimensional quantum channel in a pure state with two equal largest Schmidt coefficients.
arXiv Detail & Related papers (2021-01-17T15:31:31Z) - Identifying genuine quantum teleportation [0.0]
Quantum teleportation is a method for utilizing quantum measurements to transmit an unknown quantum state.
We propose a new benchmark which reveals that not all nonclassical teleportations are truly quantum-mechanical.
We prove that EPR steering empowers genuine quantum teleportations, rather than entanglement.
arXiv Detail & Related papers (2020-07-09T09:32:29Z) - Teleporting quantum information encoded in fermionic modes [62.997667081978825]
We consider teleportation of quantum information encoded in modes of a fermionic field.
In particular, one is forced to distinguish between single-mode entanglement swapping, and qubit teleportation with or without authentication.
arXiv Detail & Related papers (2020-02-19T14:15:16Z) - Jumptime unraveling of Markovian open quantum systems [68.8204255655161]
We introduce jumptime unraveling as a distinct description of open quantum systems.
quantum jump trajectories emerge, physically, from continuous quantum measurements.
We demonstrate that quantum trajectories can also be ensemble-averaged at specific jump counts.
arXiv Detail & Related papers (2020-01-24T09:35:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.