論文の概要: Modified CMA-ES Algorithm for Multi-Modal Optimization: Incorporating Niching Strategies and Dynamic Adaptation Mechanism
- arxiv url: http://arxiv.org/abs/2407.00939v1
- Date: Mon, 1 Jul 2024 03:41:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 00:55:54.618133
- Title: Modified CMA-ES Algorithm for Multi-Modal Optimization: Incorporating Niching Strategies and Dynamic Adaptation Mechanism
- Title(参考訳): マルチモーダル最適化のための修正CMA-ESアルゴリズム:ニッチ戦略と動的適応機構の導入
- Authors: Wathsala Karunarathne, Indu Bala, Dikshit Chauhan, Matthew Roughan, Lewis Mitchell,
- Abstract要約: 本研究では,多モード最適化問題に対する共分散行列適応進化戦略 (CMA-ES) アルゴリズムを改良する。
この拡張は、複数のグローバルミニマの課題への対処、多様性の維持と複雑なフィットネスランドスケープを探索するアルゴリズムの能力の改善に焦点を当てている。
ニッチ戦略と動的適応機構を取り入れて,複数のグローバル最適化を識別・最適化するアルゴリズムの性能を向上する。
- 参考スコア(独自算出の注目度): 0.03495246564946555
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study modifies the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm for multi-modal optimization problems. The enhancements focus on addressing the challenges of multiple global minima, improving the algorithm's ability to maintain diversity and explore complex fitness landscapes. We incorporate niching strategies and dynamic adaptation mechanisms to refine the algorithm's performance in identifying and optimizing multiple global optima. The algorithm generates a population of candidate solutions by sampling from a multivariate normal distribution centered around the current mean vector, with the spread determined by the step size and covariance matrix. Each solution's fitness is evaluated as a weighted sum of its contributions to all global minima, maintaining population diversity and preventing premature convergence. We implemented the algorithm on 8 tunable composite functions for the GECCO 2024 Competition on Benchmarking Niching Methods for Multi-Modal Optimization (MMO), adhering to the competition's benchmarking framework. The results are presenting in many ways such as Peak Ratio, F1 score on various dimensions. They demonstrate the algorithm's robustness and effectiveness in handling both global optimization and MMO- specific challenges, providing a comprehensive solution for complex multi-modal optimization problems.
- Abstract(参考訳): 本研究では,多モード最適化問題に対する共分散行列適応進化戦略 (CMA-ES) アルゴリズムを改良する。
この拡張は、複数のグローバルミニマの課題への対処、多様性の維持と複雑なフィットネスランドスケープを探索するアルゴリズムの能力の改善に焦点を当てている。
ニッチ戦略と動的適応機構を取り入れて,複数のグローバル最適化を識別・最適化するアルゴリズムの性能を向上する。
このアルゴリズムは、ステップサイズと共分散行列によって決定されたスプレッドを用いて、現在の平均ベクトルを中心とする多変量正規分布からサンプリングすることで、候補解の集団を生成する。
各ソリューションの適合度は、全地球規模のミニマムへの貢献の重み付けの和として評価され、人口の多様性を維持し、早めの収束を防ぐ。
GECCO 2024 Competition on Benchmarking Niching Methods for Multi-Modal Optimization (MMO) の8つのチューナブル複合関数に対して,提案アルゴリズムを実装した。
結果はPak Ratio, F1 score on various dimensionsなどの様々な方法で提示されている。
彼らは、グローバル最適化とMMO固有の課題の両方を扱うアルゴリズムの堅牢性と有効性を示し、複雑なマルチモーダル最適化問題に対する包括的ソリューションを提供する。
関連論文リスト
- Integrating Chaotic Evolutionary and Local Search Techniques in Decision Space for Enhanced Evolutionary Multi-Objective Optimization [1.8130068086063336]
本稿では,SOMMOP(Single-Objective Multi-Modal Optimization)とMOO(Multi-Objective Optimization)の両方に焦点を当てる。
SOMMOPではニッチ技術とカオス進化を統合し,ガウス突然変異を併用したパーシスタンス・クラスタリングを行った。
MOOでは,これらの手法を不確実性に基づく選択,適応的チューニングを組み込んだ包括的フレームワークに拡張し,決定論的群集に半径(R)の概念を導入する。
論文 参考訳(メタデータ) (2024-11-12T15:18:48Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - Federated Multi-Level Optimization over Decentralized Networks [55.776919718214224]
エージェントが隣人としか通信できないネットワーク上での分散マルチレベル最適化の問題について検討する。
ネットワーク化されたエージェントが1つの時間スケールで異なるレベルの最適化問題を解くことができる新しいゴシップに基づく分散マルチレベル最適化アルゴリズムを提案する。
提案アルゴリズムは, ネットワークサイズと線形にスケーリングし, 各種アプリケーション上での最先端性能を示す。
論文 参考訳(メタデータ) (2023-10-10T00:21:10Z) - Federated Conditional Stochastic Optimization [110.513884892319]
条件付き最適化は、不変学習タスク、AUPRC、AMLなど、幅広い機械学習タスクで見られる。
本稿では,分散フェデレーション学習のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-04T01:47:37Z) - Enhanced Opposition Differential Evolution Algorithm for Multimodal
Optimization [0.2538209532048866]
現実の問題は、本質的には複数の最適値からなるマルチモーダルである。
古典的な勾配に基づく手法は、目的関数が不連続あるいは微分不可能な最適化問題に対して失敗する。
我々は,MMOPを解くために,拡張オポポジション微分進化(EODE)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-08-23T16:18:27Z) - Late Fusion Multi-view Clustering via Global and Local Alignment
Maximization [61.89218392703043]
マルチビュークラスタリング(MVC)は、異なるビューからの補完情報を最適に統合し、クラスタリング性能を改善する。
既存のアプローチの多くは、クラスタリングに最適な類似性行列を学ぶために、複数の事前定義された類似性を直接融合する。
これらの問題に対処するために、アライメントを通してレイトフュージョンMVCを提案する。
論文 参考訳(メタデータ) (2022-08-02T01:49:31Z) - A novel multiobjective evolutionary algorithm based on decomposition and
multi-reference points strategy [14.102326122777475]
分解に基づく多目的進化アルゴリズム(MOEA/D)は、多目的最適化問題(MOP)を解く上で、極めて有望なアプローチであると考えられている。
本稿では,よく知られたPascoletti-Serafiniスキャラライゼーション法とマルチ参照ポイントの新たな戦略により,MOEA/Dアルゴリズムの改良を提案する。
論文 参考訳(メタデータ) (2021-10-27T02:07:08Z) - Manifold Interpolation for Large-Scale Multi-Objective Optimization via
Generative Adversarial Networks [12.18471608552718]
大規模多目的最適化問題(LSMOP)は、数百から数千の決定変数と複数の矛盾する目的を含むことを特徴とする。
これまでの研究では、これらの最適解は低次元空間の多様体構造に一様に分布していることが示されている。
本研究では, 生成逆数ネットワーク(GAN)に基づく多様体フレームワークを提案し, 多様体を学習し, 高品質な解を生成する。
論文 参考訳(メタデータ) (2021-01-08T09:38:38Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOSは実数値変数の制約付きおよび制約なし問題に対する大域的最適化アルゴリズムである。
これはよく知られた微分進化(DE)アルゴリズムに多くの改良を加えている。
その結果、EOSisは、最先端の単一人口自己適応Dアルゴリズムと比較して高い性能を達成可能であることが証明された。
論文 参考訳(メタデータ) (2020-07-09T10:19:22Z) - Decomposition in Decision and Objective Space for Multi-Modal
Multi-Objective Optimization [15.681236469530397]
多モード多目的最適化問題(MMMOP)はパレート最適集合内に複数の部分集合を持つ。
一般的な多目的進化的アルゴリズムは、複数の解部分集合を探索するために純粋に設計されていないが、MMMOP向けに設計されたアルゴリズムは、目的空間における劣化した性能を示す。
これは、MMMOPに対処するためのより良いアルゴリズムの設計を動機付けている。
論文 参考訳(メタデータ) (2020-06-04T03:18:47Z) - GACEM: Generalized Autoregressive Cross Entropy Method for Multi-Modal
Black Box Constraint Satisfaction [69.94831587339539]
本稿では,マスク付き自己回帰ニューラルネットワークを用いて解空間上の均一分布をモデル化するクロスエントロピー法(CEM)を提案する。
我々のアルゴリズムは複雑な解空間を表現でき、様々な異なる解領域を追跡できる。
論文 参考訳(メタデータ) (2020-02-17T20:21:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。