論文の概要: Predictive Value Generalization Bounds
- arxiv url: http://arxiv.org/abs/2007.05073v1
- Date: Thu, 9 Jul 2020 21:23:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-12 03:40:34.152144
- Title: Predictive Value Generalization Bounds
- Title(参考訳): 予測値一般化境界
- Authors: Keshav Vemuri, Nathan Srebro
- Abstract要約: 本稿では,二項分類の文脈におけるスコアリング関数の評価のためのビクテリオンフレームワークについて検討する。
本研究では,新しい分布自由な大偏差と一様収束境界を導出することにより,予測値に関するスコアリング関数の特性について検討する。
- 参考スコア(独自算出の注目度): 27.434419027831044
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study a bi-criterion framework for assessing scoring
functions in the context of binary classification. The positive and negative
predictive values (ppv and npv, respectively) are conditional probabilities of
the true label matching a classifier's predicted label. The usual
classification error rate is a linear combination of these probabilities, and
therefore, concentration inequalities for the error rate do not yield
confidence intervals for the two separate predictive values. We study
generalization properties of scoring functions with respect to predictive
values by deriving new distribution-free large deviation and uniform
convergence bounds. The latter bound is stated in terms of a measure of
function class complexity that we call the order coefficient; we relate this
combinatorial quantity to the VC-subgraph dimension.
- Abstract(参考訳): 本稿では,二項分類の文脈におけるスコアリング関数の評価のためのビクテリオンフレームワークについて検討する。
正と負の予測値(それぞれppvとnpv)は、分類器の予測ラベルと一致する真のラベルの条件付き確率である。
通常の分類誤差率はこれらの確率の線形結合であり、したがって誤差率の濃度不等式は2つの別々の予測値に対する信頼区間を生じさせない。
本研究では,新しい分布自由大偏差と一様収束境界を導出することにより,予測値に対するスコアリング関数の一般化特性について検討する。
後者の境界は、順序係数(order coefficient)と呼ばれる関数クラスの複雑性の測度として述べられ、この組合せ量とvc-subgraph次元を関連付ける。
関連論文リスト
- Semiparametric conformal prediction [79.6147286161434]
リスクに敏感なアプリケーションは、複数の、潜在的に相関したターゲット変数に対して、よく校正された予測セットを必要とする。
スコアをランダムなベクトルとして扱い、それらの連接関係構造を考慮した予測セットを構築することを目的とする。
実世界のレグレッション問題に対して,所望のカバレッジと競争効率について報告する。
論文 参考訳(メタデータ) (2024-11-04T14:29:02Z) - Generalization bounds for regression and classification on adaptive covering input domains [1.4141453107129398]
一般化誤差の上限となる一般化境界に着目する。
分類タスクの場合、対象関数を1ホット、ピースワイド定数関数として扱い、誤差測定に0/1ロスを用いる。
論文 参考訳(メタデータ) (2024-07-29T05:40:08Z) - Generating Unbiased Pseudo-labels via a Theoretically Guaranteed
Chebyshev Constraint to Unify Semi-supervised Classification and Regression [57.17120203327993]
分類におけるしきい値と擬似ラベルプロセス(T2L)は、ラベルの品質を決定するために信頼性を使用する。
本質的には、レグレッションは高品質なラベルを生成するためにバイアスのない方法も必要である。
チェビシェフの不等式に基づく不偏ラベルを生成するための理論的に保証された制約を提案する。
論文 参考訳(メタデータ) (2023-11-03T08:39:35Z) - Distribution-Free Inference for the Regression Function of Binary
Classification [0.0]
本稿では,ユーザの信頼度レベルに対する真の回帰関数に対して,正確に,分布自由で,漸近的に保証されていない信頼領域を構築するための再サンプリングフレームワークを提案する。
構築された信頼領域は強い整合性、すなわち、任意の偽モデルが確率 1 で長期にわたって除外されることが証明された。
論文 参考訳(メタデータ) (2023-08-03T15:52:27Z) - When in Doubt: Improving Classification Performance with Alternating
Normalization [57.39356691967766]
分類のための非パラメトリック後処理ステップである交互正規化(CAN)を用いた分類を導入する。
CANは、予測されたクラス確率分布を再調整することで、挑戦的な例の分類精度を向上させる。
多様な分類課題にまたがってその効果を実証的に示す。
論文 参考訳(メタデータ) (2021-09-28T02:55:42Z) - Deconfounding Scores: Feature Representations for Causal Effect
Estimation with Weak Overlap [140.98628848491146]
推定対象の偏りを伴わずに高い重なりを生じさせる,デコンファウンディングスコアを導入する。
分離スコアは観測データで識別可能なゼロ共分散条件を満たすことを示す。
特に,この手法が標準正規化の魅力的な代替となることを示す。
論文 参考訳(メタデータ) (2021-04-12T18:50:11Z) - Exact Distribution-Free Hypothesis Tests for the Regression Function of
Binary Classification via Conditional Kernel Mean Embeddings [0.0]
条件付きカーネル平均埋め込みに基づく二項分類の回帰関数に対する2つの仮説試験を提案する。
テストは柔軟な方法で導入され、タイプiのエラーの正確な確率を制御できます。
論文 参考訳(メタデータ) (2021-03-08T22:31:23Z) - Estimation and Applications of Quantiles in Deep Binary Classification [0.0]
チェック損失に基づく量子回帰は統計学において広く使われている推論パラダイムである。
二項分類設定におけるチェック損失の類似について考察する。
我々は、予測が信頼できるかどうかを判断するために使用できる個別信頼度スコアを開発する。
論文 参考訳(メタデータ) (2021-02-09T07:07:42Z) - Pointwise Binary Classification with Pairwise Confidence Comparisons [97.79518780631457]
ペアワイズ比較(Pcomp)分類を提案し、ラベルのないデータのペアしか持たない。
我々はPcomp分類をノイズラベル学習に結びつけて、進歩的UREを開発し、一貫性の正則化を課すことにより改善する。
論文 参考訳(メタデータ) (2020-10-05T09:23:58Z) - Distribution-free binary classification: prediction sets, confidence
intervals and calibration [106.50279469344937]
分布自由条件における二項分類のための不確実性定量化(キャリブレーション、信頼区間、予測セット)の3つの概念について検討する。
固定幅と一様質量の両双対の双対確率に対する信頼区間を導出する。
我々の「三脚」定理の結果として、双有理確率に対するこれらの信頼区間は分布自由キャリブレーションに繋がる。
論文 参考訳(メタデータ) (2020-06-18T14:17:29Z) - Classifier-independent Lower-Bounds for Adversarial Robustness [13.247278149124757]
理論的には、テストタイムの逆数と雑音の分類例に対するロバスト性の限界を解析する。
最適輸送理論を用いて、与えられた分類問題に対して分類器ができるベイズ最適誤差の変分式を導出する。
一般的な距離ベース攻撃の場合,ベイズ最適誤差に対して明らかな下限を導出する。
論文 参考訳(メタデータ) (2020-06-17T16:46:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。