論文の概要: Algorithmic Fairness in Education
- arxiv url: http://arxiv.org/abs/2007.05443v3
- Date: Sun, 11 Apr 2021 15:22:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-11 21:23:02.668689
- Title: Algorithmic Fairness in Education
- Title(参考訳): 教育におけるアルゴリズムフェアネス
- Authors: Ren\'e F. Kizilcec and Hansol Lee
- Abstract要約: データ駆動予測モデルは、学生、インストラクター、管理者を支援するために、教育でますます使われている。
これらのアルゴリズムシステムの予測と利用の公平性には懸念がある。
- 参考スコア(独自算出の注目度): 0.4873362301533825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven predictive models are increasingly used in education to support
students, instructors, and administrators. However, there are concerns about
the fairness of the predictions and uses of these algorithmic systems. In this
introduction to algorithmic fairness in education, we draw parallels to prior
literature on educational access, bias, and discrimination, and we examine core
components of algorithmic systems (measurement, model learning, and action) to
identify sources of bias and discrimination in the process of developing and
deploying these systems. Statistical, similarity-based, and causal notions of
fairness are reviewed and contrasted in the way they apply in educational
contexts. Recommendations for policy makers and developers of educational
technology offer guidance for how to promote algorithmic fairness in education.
- Abstract(参考訳): データ駆動予測モデルは、学生、インストラクター、管理者をサポートするために、教育でますます使われている。
しかし、これらのアルゴリズムシステムの予測と利用の公平性には懸念がある。
本稿では, 教育におけるアルゴリズムの公平性について, 教育アクセス, バイアス, および差別に関する先行文献と並行し, アルゴリズムシステム(測定, モデル学習, 行動)の核となる要素を考察し, これらのシステムの開発と展開過程におけるバイアスと差別の源を同定する。
統計的、類似性に基づく、公平性の因果的概念は、彼らが教育的文脈で適用する方法でレビューされ、対比される。
政策立案者や教育技術の開発者に対する勧告は、教育におけるアルゴリズムフェアネスを促進するためのガイダンスを提供する。
関連論文リスト
- FairAIED: Navigating Fairness, Bias, and Ethics in Educational AI Applications [2.612585751318055]
人工知能の教育への統合は変革の可能性を秘めており、適切な学習経験と創造的な教育的アプローチを提供する。
しかし、AIアルゴリズムの固有のバイアスは、特定の人口層に対する偏見を意図せずに永続させることによって、この改善を妨げている。
この調査は、教育的文脈におけるアルゴリズムフェアネスの発達するトピックを深く掘り下げている。
データ関連、アルゴリズム、ユーザーインタラクションなど、AI教育における公正性の達成を根本的に損なう共通のバイアスの形式を特定します。
論文 参考訳(メタデータ) (2024-07-26T13:59:20Z) - A Benchmark for Fairness-Aware Graph Learning [58.515305543487386]
本稿では,10の代表的な公正性を考慮したグラフ学習手法に関する広範なベンチマークを示す。
我々の詳細な分析は、既存の手法の強みと限界に関する重要な洞察を明らかにしている。
論文 参考訳(メタデータ) (2024-07-16T18:43:43Z) - Learning-Augmented Algorithms with Explicit Predictors [67.02156211760415]
アルゴリズム設計の最近の進歩は、過去のデータと現在のデータから得られた機械学習モデルによる予測の活用方法を示している。
この文脈における以前の研究は、予測器が過去のデータに基づいて事前訓練され、ブラックボックスとして使用されるパラダイムに焦点を当てていた。
本研究では,予測器を解き,アルゴリズムの課題の中で生じる学習問題を統合する。
論文 参考訳(メタデータ) (2024-03-12T08:40:21Z) - Measuring, Interpreting, and Improving Fairness of Algorithms using
Causal Inference and Randomized Experiments [8.62694928567939]
本稿では,アルゴリズム決定の公平性を測り,解釈し,改善するためのMIIFフレームワークを提案する。
ランダム化実験を用いてアルゴリズムバイアスを測定し, 異なる処理, 異なる影響, 経済的価値の同時測定を可能にする。
また、ブラックボックスアルゴリズムの信念を正確に解釈し、蒸留する、説明可能な機械学習モデルを開発した。
論文 参考訳(メタデータ) (2023-09-04T19:45:18Z) - A Human-Centered Review of Algorithms in Decision-Making in Higher
Education [16.578096382702597]
我々は、高等教育における意思決定のためのアルゴリズムを提案する幅広い論文のコーパスをレビューした。
その結果,モデルが深層学習に傾きつつあり,学生の個人データや保護属性の利用が増加していることがわかった。
解釈可能性と説明可能性の低下にもかかわらず、現在の開発は主に人間中心のレンズを組み込むことができない。
論文 参考訳(メタデータ) (2023-02-12T02:30:50Z) - Fair Enough: Standardizing Evaluation and Model Selection for Fairness
Research in NLP [64.45845091719002]
現代のNLPシステムは様々なバイアスを示しており、モデル偏見に関する文献が増えている。
本稿では,その現状を解明し,公正学習における意味ある進歩の道筋を立案することを目的とする。
論文 参考訳(メタデータ) (2023-02-11T14:54:00Z) - A Field Guide to Federated Optimization [161.3779046812383]
フェデレートされた学習と分析は、分散化されたデータからモデル(あるいは統計)を協調的に学習するための分散アプローチである。
本稿では、フェデレート最適化アルゴリズムの定式化、設計、評価、分析に関する勧告とガイドラインを提供する。
論文 参考訳(メタデータ) (2021-07-14T18:09:08Z) - All of the Fairness for Edge Prediction with Optimal Transport [11.51786288978429]
グラフにおけるエッジ予測の課題に対する公平性の問題について検討する。
本稿では,任意のグラフの隣接行列に対して,グループと個々の公正性のトレードオフを伴う埋め込み非依存の補修手順を提案する。
論文 参考訳(メタデータ) (2020-10-30T15:33:13Z) - Self-organizing Democratized Learning: Towards Large-scale Distributed
Learning Systems [71.14339738190202]
民主化された学習(Dem-AI)は、大規模な分散および民主化された機械学習システムを構築するための基本原則を備えた全体主義的哲学を定めている。
本稿では,Dem-AI哲学にヒントを得た分散学習手法を提案する。
提案アルゴリズムは,従来のFLアルゴリズムと比較して,エージェントにおける学習モデルの一般化性能が向上することを示す。
論文 参考訳(メタデータ) (2020-07-07T08:34:48Z) - Reinforcement Learning as Iterative and Amortised Inference [62.997667081978825]
我々は、この制御を推論フレームワークとして使用し、償却および反復推論に基づく新しい分類スキームを概説する。
この観点から、比較的探索されていないアルゴリズム設計空間の一部を特定できることを示す。
論文 参考訳(メタデータ) (2020-06-13T16:10:03Z) - No computation without representation: Avoiding data and algorithm
biases through diversity [11.12971845021808]
学術的および専門的なコンピューティング分野における多様性の欠如と、データセットで発生するバイアスのタイプと幅の関連性を引き合いに出す。
これらの教訓を利用して、コンピューティングコミュニティが多様性を高めるための具体的なステップを提供するレコメンデーションを開発する。
論文 参考訳(メタデータ) (2020-02-26T23:07:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。