論文の概要: Towards a Multimodal System for Precision Agriculture using IoT and
Machine Learning
- arxiv url: http://arxiv.org/abs/2107.04895v1
- Date: Sat, 10 Jul 2021 19:19:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-13 15:54:29.188907
- Title: Towards a Multimodal System for Precision Agriculture using IoT and
Machine Learning
- Title(参考訳): IoTと機械学習を用いた精密農業のためのマルチモーダルシステムを目指して
- Authors: Satvik Garg, Pradyumn Pundir, Himanshu Jindal, Hemraj Saini, Somya
Garg
- Abstract要約: データ収集のためのIoT(Internet of Things)や、作物の損傷予測のための機械学習、作物の病気検出のためのディープラーニングといった技術が使用されている。
作物の被害予測には、ランダムフォレスト(RF)、光勾配昇降機(LGBM)、XGBoost(XGB)、決定木(DT)、K Nearest Neighbor(KNN)などのアルゴリズムが用いられている。
VGG16、Resnet50、DenseNet121といった事前学習された畳み込みニューラルネットワーク(CNN)モデルも、作物が何らかの病気で汚染されているかどうかを確認するために訓練されている。
- 参考スコア(独自算出の注目度): 0.5249805590164902
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Precision agriculture system is an arising idea that refers to overseeing
farms utilizing current information and communication technologies to improve
the quantity and quality of yields while advancing the human work required. The
automation requires the assortment of information given by the sensors such as
soil, water, light, humidity, temperature for additional information to furnish
the operator with exact data to acquire excellent yield to farmers. In this
work, a study is proposed that incorporates all common state-of-the-art
approaches for precision agriculture use. Technologies like the Internet of
Things (IoT) for data collection, machine Learning for crop damage prediction,
and deep learning for crop disease detection is used. The data collection using
IoT is responsible for the measure of moisture levels for smart irrigation, n,
p, k estimations of fertilizers for best yield development. For crop damage
prediction, various algorithms like Random Forest (RF), Light gradient boosting
machine (LGBM), XGBoost (XGB), Decision Tree (DT) and K Nearest Neighbor (KNN)
are used. Subsequently, Pre-Trained Convolutional Neural Network (CNN) models
such as VGG16, Resnet50, and DenseNet121 are also trained to check if the crop
was tainted with some illness or not.
- Abstract(参考訳): 精密農業制度は、現在の情報・通信技術を利用した農業を監督し、人的作業を進めながら収穫量や品質を向上させることを指す。
自動化には、土壌、水、光、湿度、温度などのセンサーが与える情報の組み合わせが必要であり、操作者に正確なデータを提供し、農家に優れた収量を得る。
本研究は, 精密農業利用における最先端のアプローチをすべて取り入れた研究である。
データ収集のためのIoT(Internet of Things)や、作物被害予測のための機械学習、作物病検出のためのディープラーニングといった技術が使用されている。
IoTを用いたデータ収集は、スマート灌水のための水分レベルの測定、n, p, kによる最適な収量開発のための肥料の推定に責任がある。
作物被害予測には、ランダムフォレスト(rf)、光勾配ブースティングマシン(lgbm)、xgboost(xgb)、決定木(dt)、k極近傍(knn)といった様々なアルゴリズムが使用される。
その後、vgg16、resnet50、drknet121などの事前訓練された畳み込みニューラルネットワーク(cnn)モデルも、作物が何らかの病気で汚染されたかどうかを確認するために訓練される。
関連論文リスト
- Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
このモデルは, 植物の成長段階, 土壌条件の多様性, 照明条件の異なるランダム化フィールド配置をシミュレートすることができる。
我々のデータセットにはセマンティックラベル付き12,000の画像が含まれており、精密農業におけるコンピュータビジョンタスクの包括的なリソースを提供する。
論文 参考訳(メタデータ) (2024-03-27T08:42:47Z) - Data-Centric Digital Agriculture: A Perspective [23.566985362242498]
デジタル農業は、食料、食料、繊維、燃料の需要の増加に対応するために急速に発展している。
デジタル農業における機械学習の研究は、主にモデル中心のアプローチに焦点を当てている。
デジタル農業の可能性を完全に実現するためには、この分野におけるデータの役割を包括的に理解することが不可欠である。
論文 参考訳(メタデータ) (2023-12-06T11:38:26Z) - Crop Disease Classification using Support Vector Machines with Green
Chromatic Coordinate (GCC) and Attention based feature extraction for IoT
based Smart Agricultural Applications [0.0]
植物病は農業栽培中の葉に悪影響を及ぼし、作物の生産量と経済的価値に大きな損失をもたらす。
各種機械学習(ML)と深層学習(DL)アルゴリズムが開発され,植物病の検出のための研究が行われている。
本稿では、注意に基づく特徴抽出、RGBチャネルに基づく色分析、SVM(Support Vector Machines)による性能向上による事前作業に基づく新しい分類手法を提案する。
論文 参考訳(メタデータ) (2023-11-01T10:44:49Z) - Recent applications of machine learning, remote sensing, and iot
approaches in yield prediction: a critical review [0.0]
農業におけるリモートセンシングと機械学習の統合は、業界を変えつつある。
本稿では、作物収量予測にRS、ML、クラウドコンピューティング、IoTを使用した関連記事についてレビューする。
論文 参考訳(メタデータ) (2023-06-07T16:13:16Z) - A workflow for segmenting soil and plant X-ray CT images with deep
learning in Googles Colaboratory [45.99558884106628]
我々はX線マイクロCT画像に畳み込みニューラルネットワークを適用するためのモジュラーワークフローを開発した。
クルミの葉, アーモンドの花芽, 土壌集合体のサンプルスキャンを用いて, 最適な結果を得るために, パラメータを最適化する方法を示す。
論文 参考訳(メタデータ) (2022-03-18T00:47:32Z) - Deep Reinforcement Learning Assisted Federated Learning Algorithm for
Data Management of IIoT [82.33080550378068]
産業用IoT(Industrial Internet of Things)の継続的な拡大により、IIoT機器は毎回大量のユーザデータを生成する。
IIoTの分野で、これらの時系列データを効率的かつ安全な方法で管理する方法は、依然として未解決の問題である。
本稿では,無線ネットワーク環境におけるIIoT機器データ管理におけるFL技術の適用について検討する。
論文 参考訳(メタデータ) (2022-02-03T07:12:36Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
本稿では, 深層ニューラルネットワークを用いたジャガイモの空中画像解析手法を提案する。
主な目的は、植物レベルでの健康作物とストレス作物の自動空間認識を実証することである。
実験により、フィールド画像中の健康植物とストレス植物を識別し、平均Dice係数0.74を達成できることを示した。
論文 参考訳(メタデータ) (2021-06-14T21:57:40Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
我々は,機械モデリングと衛星データ利用の並列化を活用し,作物生産性の高度モニタリングを行う。
本モデルでは, 地域情報を使用しなくても, 各種C3作物の種類, 環境条件の総合的生産性を推定することに成功した。
これは、現在の地球観測クラウドコンピューティングプラットフォームの助けを借りて、新しい衛星センサーから作物の生産性をグローバルにマップする可能性を強調しています。
論文 参考訳(メタデータ) (2020-12-07T16:23:13Z) - Learning from Data to Optimize Control in Precision Farming [77.34726150561087]
特集は、統計的推論、機械学習、精密農業のための最適制御における最新の発展を示す。
衛星の位置決めとナビゲーションとそれに続くInternet-of-Thingsは、リアルタイムで農業プロセスの最適化に使用できる膨大な情報を生成する。
論文 参考訳(メタデータ) (2020-07-07T12:44:17Z) - Crop Knowledge Discovery Based on Agricultural Big Data Integration [2.597676155371155]
農業データは、IoT(Internet of Thing)、センサー、衛星、気象観測所、ロボット、農業機器、農業実験所、農家、政府機関、農業機関など、さまざまなソースを通じて生成される。
本稿では,他のデータセットやビッグデータモデルを組み込むのに十分なフレキシブルなコンステレーションスキーマを用いた農業データ統合手法を提案する。
論文 参考訳(メタデータ) (2020-03-11T00:13:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。